Green Solvents in Synthesis of Schiff’s Base: A Comprehensive Review of Sustainable Approach

Open Access

Year : 2024 | Volume :11 | Issue : 03 | Page : –
By

Shashi V. Ranga,

Mansi Gandhi,

  1. Assistant Professor (chemistry) Govt. Engineering College, Valsad Gujarat India
  2. Research Scholar Gujarat Technological University Gujarat India

Abstract

The synthesis of Schiffs & bases is a fundamental process of organic synthesis that traditionally involves using hazardous organic solvents. These solvents pose significant risks to both the environment and human health due to their toxicity, volatility, and persistence in nature. These negative effects of organic solvents have led to the development of greener and more sustainable alternatives that aligns with the principles of Green Chemistry. This review paper aims to provide a comprehensive overview of the effectiveness of various green solvents such as water, ionic liquids and supercritical carbon dioxide, in promoting the condensation reaction between amines and aldehyde or ketones. It first discusses about the various traditional solvents used in synthesis of Schiff’s bases and their advantages and disadvantages. The paper then discuss about advantages, disadvantages and the challenges associated with the use of water, Ionic liquids and supercritical carbon dioxide, as solvent in Schiff’s base synthesis. Water, is highlighted for its non-toxic, non-flammable, and environmentally benign properties, leading to high yields of Schiff’s bases without the need for additional catalysts, as reported in number of research studies. Ionic liquids, characterized by their low volatility and tunable properties, are explored as versatile green solvents. Supercritical carbon dioxide (scCO 2 ) is presented as another promising green solvent since it is non-toxic, non-flammable, and can be easily removed from the reaction mixture by depressurization, leaving no solvent residues. Furthermore, these solvents can be designed to possess specific characteristics that enhance the reaction efficiency and selectivity. Additionally, this review highlights the importance of considering green chemistry principles in the synthesis of Schiffs & bases and emphasizes the potential of green solvents to revolutionize this field.

Keywords: Schiff’s base, green solvents, ionic liquids, supercritical carbon dioxide, sustainable synthesis

[This article belongs to Emerging Trends in Chemical Engineering(etce)]

How to cite this article: Shashi V. Ranga, Mansi Gandhi. Green Solvents in Synthesis of Schiff’s Base: A Comprehensive Review of Sustainable Approach. Emerging Trends in Chemical Engineering. 2024; 11(03):-.
How to cite this URL: Shashi V. Ranga, Mansi Gandhi. Green Solvents in Synthesis of Schiff’s Base: A Comprehensive Review of Sustainable Approach. Emerging Trends in Chemical Engineering. 2024; 11(03):-. Available from: https://journals.stmjournals.com/etce/article=2024/view=160279

Full Text PDF Download


Browse Figures

References

  1. Schiff, H. (1864). Mittheilungen aus dem Universitätslaboratorium in Pisa: eine neue Reihe organischer Basen. Justus Liebigs Annalen der Chemie, 131(1), 118-119.
  2. Schiff, H. (1866). Eine neue reihe organischer diamine. Justus Liebigs Annalen der Chemie, 140(1), 92-137.
  3. Tidwell, T. T. (2008). Hugo (Ugo) Schiff, Schiff bases, and a century of β‐lactam synthesis. Angewandte Chemie International Edition, 47(6), 1016-1020
  4. Shriner, R. L., Hermann, C. K., Morrill, T. C., Curtin, D. Y., & Fuson, R. C. (2003). The systematic identification of organic compounds. John Wiley & Sons.
  1. Abdul Hameed, Mariya al-Rashida, Maliha Uroos, Syed Abid Ali & Khalid Mohammed Khan (2017) Schiff bases in medicinal chemistry: a patent review (2010-2015), Expert Opinion on Therapeutic Patents, 27:1, 63-79, DOI: 10.1080/13543776.2017.1252752
  1. Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; Alam, F.; et al. Recent pharmacological advancements in schiff bases: A review. Acta Pol. Pharm. 2014, 71, 531–535. [PubMed] 4. da Silva, C.M.; da
  2. Yoon, T. P., & Jacobsen, E. N. (2003). Privileged chiral catalysts. Science, 299(5613), 1691-1693.
  3. Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 33(7), 410-421.
  4. Katsuki, T. (2004). Unique asymmetric catalysis of cis-β metal complexes of salen and its related Schiff-base ligands. Chemical Society Reviews, 33(7), 437-444.
  5. Matsunaga, S., & Shibasaki, M. (2013). Multimetallic schiff base complexes as cooperative asymmetric catalysts. Synthesis, 45(04), 421-437.
  6. Whiteoak, C. J., Salassa, G., & Kleij, A. W. (2012). Recent advances with π-conjugated salen systems. Chemical Society Reviews, 41(2), 622-631.
  7. Dhanaraj, C. J., Johnson, J., Joseph, J., & Joseyphus, R. S. (2013). Quinoxaline-based Schiff base transition metal complexes. Journal of Coordination Chemistry, 66(8), 1416-1450.
  8. Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V., & Verpoort, F. (2005). Synthesis of Schiff Base‐Ruthenium Complexes and Their Applications in Catalytic Processes. Advanced Synthesis & Catalysis, 347(14), 1721-1743.
  9. Gupta, K. C., & Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252(12-14), 1420-1450.
  10. Aziz, A. A. A., Salem, A. N. M., Sayed, M. A., & Aboaly, M. M. (2012). Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M (II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2). Journal of Molecular Structure,1010, 130-138.
  11. Vukovic, N., Sukdolak, S., Solujic, S., & Niciforovic, N. (2010). Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: Synthesis and in vitro assessments. Food chemistry, 120(4), 1011-1018.
  12. Saravanan, G., Pannerselvam, P., & Prakash, C. R. (2010). Synthesis and anti-microbial screening of novel schiff bases of 3-amino-2-methyl quinazolin 4-(3H)-one.Journal of Advanced Pharmaceutical Technology & Research, 1(3), 320-325
  13. Rathelot, P., Vanelle, P., Gasquet, M., Delmas, F., Crozet, M. P., Timon-David, P., & Maldonado, J. (1995). Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. European journal of medicinal chemistry, 30(6), 503-508.
  14. Golcu, A., Tumer, M., Demirelli, H., & Wheatley, R. A. (2005). Cd (II) and Cu (II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity. Inorganica Chimica Acta, 358(6), 1785-1797.
  15. Zishen, W., Zhiping, L., & Zhenhuan, Y. (1993). Synthesis, characterization and antifungal activity of glycylglycine Schiff base complexes of 3d transition metal ions. Transition Metal Chemistry, 18, 291-294.
  16. Turan, N., & Akdeniz, A. (2023). Synthesis, Structural Characterization of Schiff Base Ligands and Their RuII‐p‐Cymene Complexes, and Catalytic Activity in the Transfer Hydrogenation of Ketones. Catalysis Letters, 153(10), 3009-3018.
  17. Buldurun, K., ÇOLAK, N., ÖZDEMİR, İ., & TURAN, N. (2019). Schiff base and its Fe (II), Zn (II), Ru (II), Pd (II) complexes containing ONS donor atoms: Synthesis, characterization and catalytic studies. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(61), 73-82.
  18. Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D., & Hamon, J. R. (2018). Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 357, 144-172
  19. Gulsah Gumrukcu,Serkis Garikyan,Gulnur Keser Karaoglan,and Dolunay Sakar(2013). Structural and Surface Characterization of Newly Synthesized D-π-D Type Schiff Base Ligand: (1E,2E)-3-[4-(Dimethylamino)phenyl]prop-2-en-1-ylidene)phenylamine, Journal of Chemistry, Volume 2013 | Article ID 298205 | https://doi.org/10.1155/2013/298205
  20. Shestimerova, T.A., Golubev, N.A., Mironov, A.V. et al. Synthesis, structure, and properties of Schiff base iodobismuthate and its alteration in DMSO solution. Russ Chem Bull 67, 1212–1219 (2018). https://doi.org/10.1007/s11172-018-2204-6
  21. Maruthesh, H., M. Katagi, and B. Nandeshwarappa. (2023) “A convenient synthesis, characterization and biological evaluation of novel schiff base heterocycles as potential antimicrobial, antitubercular agents and their structural activity relationship.” Current Chemistry Letters 12.4 759-768.
  22. Jai, Devi, Sharma Som, and Kumar Sanjeev. “Synthesis, spectral studies and antimicrobial evaluation of transition metal complexes of bidentate Schiff base ligands derived from 4-amino quinoline.” Research Journal of Chemistry and Environment Vol 26 (2022): 5.
  23. Patil, D. Y., et al. (2019):”Highly selective and sensitive colorimetric probe for Al3+ and Fe3+ metal ions based on 2-aminoquinolin-3-yl phenyl hydrazone Schiff base.” InorganicaChimica Acta 492 167-176.
  24. Prasad, Sakshith Raghavendra, et al. “Synthesis, antimicrobial, and antitubercular evaluation of new Schiff bases with in silico ADMET and molecular docking studies.” European Journal of Chemistry 13.1 (2022): 109-116
  25. Xie, S., Friesen, M.C., Baris, D. et al. (2024). Occupational exposure to organic solvents and risk of bladder cancer. J Expo Sci Environ Epidemiol https://doi.org/10.1038/s41370-024-00651-4
  26. Snyder R. Leukemia and benzene. Int J Environ Res Public Health. 2012 Aug;9(8):2875-93. doi: 10.3390/ijerph9082875. Epub 2012 Aug 14. PMID: 23066403; PMCID: PMC3447593.
  27. Vidyavathi, G. T., et al. (2020): “Cashew nutshell liquid catalyzed green chemistry approach for synthesis of a Schiff base and its divalent metal complexes: molecular docking and DNA reactivity.” Nucleosides, Nucleotides & Nucleic Acids 40.3 264-287
  28. Tanaka K, Shiraishi R., (2000); Clean and efficient condensation reactions of aldehydes and amines in a water suspension medium. Green Chemistry. 2:272-273
  29. Koteswara Rao , S. Subba Reddy , B. Satheesh Krishna , K. Reddi,Mohan Naidu , C. Naga Raju & S.K. Ghosh (2010) Synthesis of Schiff’s bases in aqueous medium: a green alternative approach with effective mass yield and high reaction rates, Green Chemistry Letters and Reviews, 3:3, 217-223, DOI: 10.1080/17518251003716550
  30. Kerton FM, Marriott R (2013c) Supercritical fluids. alternative solvents for green chemistry (RSC Green Chemistry Series No 20) 2nd edn, ch 5. Royal Society of Chemistry, Cambridge, pp 115–148
  31. Wai, C. M., Hunt, F., Ji, M., & Chen, X. (1998). Chemical reactions in supercritical carbon dioxide. Journal of chemical education, 75(12), 1641.
  32. Park, S. E., Chang, J. S., & Lee, K. W. (Eds.). (2004). Carbon Dioxide Utilization for Global Sustainability: Proceedings of the 7th International Conference on Carbon Dioxide Utilization, Seoul, Korea, October 12-16, 2003. Elsevier.
  33. Li, YiQun, (2009),  Synthesis of novel ionic liquid-supported Schiff bases. (xi) 165-171. 09-3997FP
  34. Cai Qing-hai et al.,(2005) Preparation and Characterization of Novel Ionic Liquids Based on Schiff Base Cation, Chinese Journal of Chemistry , 23(8), pp:990-992
  35. Al-Blewi, F.F., Rezki, N., Al-Sodies, S.A. et al. (2018) Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation. Chemistry Central Journal 12, 118.
  36. Andrade, C. K. Z., Takada, S. C. S., Alves, L. M., Rodrigues, J. P., Suarez, P. A. Z., Brandao, R. F., & Soares, V. C. D. (2004). Molecular sieves in ionic liquids as an efficient and recyclable medium for the synthesis of imines. Synlett, 2004(12), 2135-2138.

Regular Issue Open Access Review Article
Volume 11
Issue 03
Received June 26, 2024
Accepted July 11, 2024
Published August 1, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.