Presence of a Bulk Viscous Universe within f(R, T) Gravity

Year : 2024 | Volume :01 | Issue : 01 | Page : –
By

Lokesh Kumar Sharma,

  1. Assistant Professor GLA University, Mathura Uttar Pradesh India

Abstract

This paper offers a comprehensive analysis of a bulk viscous universe in the context of f(R, T) gravity, where (R) signifies the Ricci scalar and (T) represents the trace of the energy-momentum tensor. The primary objective of our work is to get explicit solutions to the modified field equations by using a power-law scale factor representation. With this method, we have obtained functions of cosmic time and redshift for the Hubble parameter and the deceleration parameter.
To validate our theoretical model, we have estimated the current values of these cosmological parameters using observational data. Specifically, we have utilized observational Hubble data and Supernova Type Ia (SN Ia) datasets to constrain the model. At the 1σ confidence level, we have determined that the present value of the deceleration parameter, q0 = −0.30 ± 0.05, and the model parameter, m = 0.70 ± 0.02.
Additionally, we have examined the energy requirements in this cosmological framework and performed an Om(z) analysis within the context of the anisotropic Locally Rotationally Symmetric (LRS) Bianchi type I model. Our results show a strong agreement between our theoretical model and the observational data. This alignment offers valuable new insights into the characteristics and dynamics of a bulk viscous universe in modified gravity theories, highlighting the model’s relevance and precision in explaining cosmological observations.

Keywords: Cosmological parameters; Bulk viscosity; f (R, T) gravity; LRS Bianchi-I space-time, Gravitational field theories.

[This article belongs to International Journal of Universe(iju)]

How to cite this article: Lokesh Kumar Sharma. Presence of a Bulk Viscous Universe within f(R, T) Gravity. International Journal of Universe. 2024; 01(01):-.
How to cite this URL: Lokesh Kumar Sharma. Presence of a Bulk Viscous Universe within f(R, T) Gravity. International Journal of Universe. 2024; 01(01):-. Available from: https://journals.stmjournals.com/iju/article=2024/view=157845



References

  1. Perlmutter S, Aldering G, Valle MD, Deustua S, Ellis RS, Fabbro S, Fruchter A, Goldhaber G, Groom DE, Hook IM, Kim AG. Discovery of a supernova explosion at half the age of the Universe. Nature. 1998 Jan 1;391(6662):51-4.
  2. Perlmutter S, Turner MS, White M. Constraining dark energy with type Ia supernovae and large-scale structure. Physical Review Letters. 1999 Jul 26;83(4):670.
  3. Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut BR. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The astronomical journal. 1998 Sep 1;116(3):1009.
  4. Tonry JL, Schmidt BP, Barris B, Candia P, Challis P, Clocchiatti A, Coil AL, Filippenko AV, Garnavich P, Hogan C, Holland ST. Cosmological results from high-z supernovae. The Astrophysical Journal. 2003 Sep 1;594(1):1.
  5. Clocchiatti A, Schmidt BP, Filippenko AV, Challis P, Coil AL, Covarrubias R, Diercks A, Garnavich P, Germany L, Gilliland R, Hogan C. Hubble space telescope and ground-based observations of type Ia supernovae at redshift 0.5: cosmological implications. The Astrophysical Journal. 2006 May 1;642(1):1.
  6. de Bernardis P, Ade PA, Bock JJ, Bond JR, Borrill J, Boscaleri A, Coble K, Crill BP, De Gasperis G, Farese PC, Ferreira PG. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature. 2000 Apr 27;404(6781):955-9.
  7. Clocchiatti A, Phillips MM, Suntzeff NB, DellaValle M, Cappellaro E, Turatto M, Hamuy M, Avilés R, Navarrete M, Smith C, Rubenstein EP. The luminous Type Ic supernova 1992ar at z= 0.145. The Astrophysical Journal. 2000 Feb 1;529(2):661.
  8. Blake C, Kazin EA, Beutler F, Davis TM, Parkinson D, Brough S, Colless M, Contreras C, Couch W, Croom S, Croton D. The WiggleZ Dark Energy Survey: mapping the distance–redshift relation with baryon acoustic oscillations. Monthly Notices of the Royal Astronomical Society. 2011 Dec 1;418(3):1707-24.
  9. Padmanabhan N, Xu X, Eisenstein DJ, Scalzo R, Cuesta AJ, Mehta KT, Kazin E. A 2 per cent distance to z= 0.35 by reconstructing baryon acoustic oscillations–I. Methods and application to the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society. 2012 Dec 11;427(3):2132-45.
  10. Anderson L, Aubourg E, Bailey S, Beutler F, Bhardwaj V, Blanton M, Bolton AS, Brinkmann J, Brownstein JR, Burden A, Chuang CH. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Monthly Notices of the Royal Astronomical Society. 2014 Jun 11;441(1):24-62.
  11. Bennett CL, Larson D, Weiland JL, Jarosik N, Hinshaw G, Odegard N, Smith KM, Hill RS, Gold B, Halpern M, Komatsu E. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. The Astrophysical Journal Supplement Series. 2013 Sep 20;208(2):20.
  12. Arkani-Hamed N, Hall LJ, Kolda C, Murayama H. New perspective on cosmic coincidence problems. Physical Review Letters. 2000 Nov 20;85(21):4434.
  13. Brans C, Dicke RH. Mach’s principle and a relativistic theory of gravitation. Physical review. 1961 Nov 1;124(3):925.
  14. Lyra G. Über eine modifikation der riemannschen geometrie. Mathematische Zeitschrift. 1951 Mar;54(1):52-64.
  15. Carroll SM, Duvvuri V, Trodden M, Turner MS. Is cosmic speed-up due to new gravitational physics?. Physical Review D. 2004 Aug 23;70(4):043528.
  16. Nojiri SI, Odintsov SD. Introduction to modified gravity and gravitational alternative for dark energy. International Journal of Geometric Methods in Modern Physics. 2007 Feb;4(01):115-45.
  17. Nojiri SI, Odintsov SD. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Physics Letters B. 2005 Dec 15;631(1-2):1-6.
  18. Linder EV. Einstein’s other gravity and the acceleration of the universe. Physical Review D—Particles, Fields, Gravitation, and Cosmology. 2010 Jun 15;81(12):127301.
  19. Myrzakulov R. Accelerating universe from F (T) gravity. The European Physical Journal C. 2011 Sep;71(9):1752.
  20. Harko T, Lobo FS, Nojiri SI, Odintsov SD. f (R, T) gravity. Physical Review D—Particles, Fields, Gravitation, and Cosmology. 2011 Jul 15;84(2):024020.
  21. Nojiri SI, Odintsov SD. Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Physics Reports. 2011 Aug 1;505(2-4):59-144.
  22. Shabani H, Farhoudi M. f (R, T) cosmological models in phase space. Physical Review D—Particles, Fields, Gravitation, and Cosmology. 2013 Aug 15;88(4):044048.
  23. Nojiri S, Odintsov SD, Oikonomou V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Physics Reports. 2017 Jun 2;692:1-04.
  24. Yousaf Z, Bamba K, Bhatti MZ. Causes of irregular energy density in f (R, T) gravity. Physical Review D. 2016 Jun 15;93(12):124048.
  25. Yousaf Z, Bamba K, Bhatti MZ, Ghafoor U. Charged gravastars in modified gravity. Physical Review D. 2019 Jul 15;100(2):024062.
  26. Yousaf Z. Stellar filaments with Minkowskian core in the Einstein-Λ gravity. The European Physical Journal Plus. 2017 Jun 26;132(6):276.
  27. Jaffe TR, Banday AJ, Eriksen HK, Górski KM, Hansen FK. Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?. The Astrophysical Journal. 2005 Jul 25;629(1):L1.
  28. Hinshaw G, Weiland JL, Hill RS, Odegard N, Larson D, Bennett CL, Dunkley J, Gold B, Greason MR, Jarosik N, Komatsu E. Five-year wilkinson microwave anisotropy probe* observations: data processing, sky maps, and basic results. The Astrophysical Journal Supplement Series. 2009 Feb 11;180(2):225.
  29. Singh MK, Ram S. Dynamics of Anisotropic Bianchi Type-III Bulk Viscous String Model with Magnetic Field. International Journal of Theoretical Physics. 2014 Jul;53(7):2198-210.
  30. Misner CW. The isotropy of the universe. Astrophysical Journal, vol. 151, p. 431. 1968 Feb;151:431.
  31. Zimdahl W, Schwarz DJ, Balakin AB, Pavon D. Cosmic antifriction and accelerated expansion. Physical Review D. 2001 Aug 3;64(6):063501.
  32. Singh CP, Kumar P. Friedmann model with viscous cosmology in modified $$ f (R, T) $$ gravity theory. The European Physical Journal C. 2014 Oct;74(10):1-1.
  33. Amirhashchi H, Amirhashchi S. Current constraints on anisotropic and isotropic dark energy models. Physical Review D. 2019 Jan 15;99(2):023516.
  34. Yadav AK, Rahaman F, Ray S, Goswami GK. Magnetized dark energy and the late time acceleration. The European Physical Journal Plus. 2012 Oct 22;127(10):127.
  35. Goswami GK, Yadav AK, Dewangan RN. Magnetised strings in Λ-dominated anisotropic Universe. International Journal of Theoretical Physics. 2016 Nov;55:4651-64.
  36. Goswami GK, Dewangan RN, Yadav AK, Pradhan A. Anisotropic string cosmological models in Heckmann-Schucking space-time. Astrophysics and Space Science. 2016 Feb;361:1-0.
  37. Sharma LK, Singh BK, Yadav AK. Viability of Bianchi type V universe in f (R, T)= f 1 (R)+ f 2 (R) f 3 (T) gravity. International Journal of Geometric Methods in Modern Physics. 2020 Jun 26;17(07):2050111.
  38. Yadav AK, Yadav L. Bianchi type III anisotropic dark energy models with constant deceleration parameter. International Journal of Theoretical Physics. 2011 Jan;50:218-27.
  39. Yadav AK. Some anisotropic dark energy models in Bianchi type-V space-time. Astrophysics and Space Science. 2011 Oct;335:565-75.
  40. Yadav AK. A transitioning universe with anisotropic dark energy. Astrophysics and Space Science. 2016 Aug;361(8):276.
  41. Yadav AK. Transitioning scenario of Bianchi-I universe within f (R, T) formalism. Brazilian Journal of Physics. 2019 Apr 15;49(2):262-70.
  42. Kumar S, Singh CP. Anisotropic dark energy models with constant deceleration parameter. General Relativity and Gravitation. 2011 May;43:1427-42.
  43. Mishra B, Tarai S, Tripathy SK. Anisotropic cosmological reconstruction in f (R, T) gravity. Modern Physics Letters A. 2018 Sep 21;33(29):1850170.
  44. Mishra B, Tripathy SK, Ray PP. Bianchi-V string cosmological model with dark energy anisotropy. Astrophysics and Space Science. 2018 May;363:1-7.
  45. Hogeveen F, Van Leeuwen WA, Salvati GA, Schelling EE. Viscous phenomena in cosmology. I. Lepton era. Phys. A Stat. Mech. Appl. 1986;134:458.
  46. Brevik I, Grøn Ø, de Haro J, Odintsov SD, Saridakis EN. Viscous cosmology for early-and late-time universe. International Journal of Modern Physics D. 2017 Dec 17;26(14):1730024.
  47. Brevik I, Elizalde E, Odintsov SD, Timoshkin AV. Inflationary universe in terms of a van der Waals viscous fluid. International Journal of Geometric Methods in Modern Physics. 2017 Dec 14;14(12):1750185.
  48. Mishra B, Ray PP, Myrzakulov R. Bulk viscous embedded hybrid dark energy models. The European Physical Journal C. 2019 Jan;79:1-8.
  49. Yadav AK, Sahoo PK, Bhardwaj V. Bulk viscous Bianchi-I embedded cosmological model in f (R, T)= f 1 (R)+ f 2 (R) f 3 (T) gravity. Modern Physics Letters A. 2019 Jun 21;34(19):1950145.
  50. Sahoo PK, Sahoo P, Bishi BK. Anisotropic cosmological models in f (R, T) gravity with variable deceleration parameter. International Journal of Geometric Methods in Modern Physics. 2017 Jun 23;14(06):1750097.
  51. Akarsu Ö, Kumar S, Sharma S, Tedesco L. Constraints on a Bianchi type I spacetime extension of the standard Λ CDM model. Physical Review D. 2019 Jul 15;100(2):023532.
  52. Akarsu Ö, Dereli T, Kumar S, Xu L. Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter. The European Physical Journal Plus. 2014 Feb;129:1-4.
  53. Suzuki N, Rubin D, Lidman C, Aldering G, Amanullah R, Barbary K, Barrientos LF, Botyanszki J, Brodwin M, Connolly N, Dawson KS. The Hubble Space Telescope cluster supernova survey. V. Improving the dark-energy constraints above z> 1 and building an early-type-hosted supernova sample. The Astrophysical Journal. 2012 Jan 27;746(1):85.
  54. Visser M, Barcelo C. Energy conditions and their cosmological implications. InCosmo-99 2000 (pp. 98-112).
  55. Chakraborty S. An alternative f (R, T) gravity theory and the dark energy problem. General Relativity and Gravitation. 2013 Oct;45:2039-52.
  56. Moraes PH, Sahoo PK. The simplest non-minimal matter–geometry coupling in the f (R, T) cosmology. The European Physical Journal C. 2017 Jul;77:1-8.
  57. Sahni V, Shafieloo A, Starobinsky AA. Two new diagnostics of dark energy. Physical Review D—Particles, Fields, Gravitation, and Cosmology. 2008 Nov 15;78(10):103502.
  58. Sahoo PK, Moraes PH, Sahoo P, Bishi BK. f (R, T)= f (R)+ λ T f (R, T)= f (R)+ λ T gravity models as alternatives to cosmic acceleration. The European Physical Journal C. 2018 Sep;78:1-0.
  59. Shahalam M, Sami S, Agarwal A. Om diagnostic applied to scalar field models and slowing down of cosmic acceleration. Monthly Notices of the Royal Astronomical Society. 2015 Apr 11;448(3):2948-59.
  60. Barcelo C, Visser M. Twilight for the energy conditions?. International Journal of Modern Physics D. 2002 Dec;11(10):1553-60.

Regular Issue Subscription Original Research
Volume 01
Issue 01
Received July 10, 2024
Accepted July 22, 2024
Published July 23, 2024