Role of Gastric Receptors in Gastrointestinal Disorder

Year : 2024 | Volume :02 | Issue : 02 | Page : 30-42
By

Ambika Nand Jha,

Varsha R. Gaikwad,

Abstract

The established and potential roles of CCK1 and CCK2 receptors in gastrointestinal (GI) and metabolic diseases are analyzed, along with findings from human studies involving agonists and antagonists. While there is considerable evidence implicating CCK1R in various diseases such as pancreatic disorders, motility disorders, tumor growth, satiety regulation, and CCK-deficient states, its specific role in these conditions remains ambiguous. Conversely, the role of CCK2R in physiological (e.g., atrophic gastritis) and pathological (e.g., Zollinger-Ellison syndrome) hypergastrinemic states, its effects on gastric mucosa, and its involvement in acid-peptic disorders are well-defined. Recent research also suggests a potential role for CCK2R in various GI malignancies. Current data from human trials investigating CCK2R antagonists are presented, along with their potential therapeutic implications for these conditions. Additionally, the utilization of CCK2 receptors as targets for medical imaging is discussed. Despite being among the earliest discovered gastrointestinal hormones, significant advancements in our understanding of CCK and gastrin signaling have been achieved through structural characterization, pharmacological identification, receptor cloning (CCK1R, CCK2R), and the development of receptor antagonists. Further insights have been gained from studies involving receptor and agonist knockout animals, as well as the characterization of receptor location and gene expression [6]. This review focuses on elucidating the roles of CCK and gastrin and their receptors (CCK1R and CCK2R) in gastrointestinal and metabolic diseases, with particular emphasis on human studies and the potential for utilizing these insights for the treatment of human ailments.

Keywords: Gastrointestinal, cholecystokinin (CCK), CCK1R, CCK2R, Malignancies

[This article belongs to International Journal of Biomedical Innovations and Engineering(ijbie)]

How to cite this article: Ambika Nand Jha, Varsha R. Gaikwad. Role of Gastric Receptors in Gastrointestinal Disorder. International Journal of Biomedical Innovations and Engineering. 2024; 02(02):30-42.
How to cite this URL: Ambika Nand Jha, Varsha R. Gaikwad. Role of Gastric Receptors in Gastrointestinal Disorder. International Journal of Biomedical Innovations and Engineering. 2024; 02(02):30-42. Available from: https://journals.stmjournals.com/ijbie/article=2024/view=156990



References

  1. Jensen RT. Involvement of cholecystokinin/gastrin-related peptides and their receptors in clinical gastrointestinal disorders. Pharmacol. Toxicol. 2002;91:333–350.
  2. Monstein HJ, Nylander AG, Salehi A, Chen D, Lundquist I, Hakanson R. Cholecystokinin-A and cholecystokinin-B/gastrin receptor mRNA expression in the gatrointestinal tract and pancreas of the rat and man. A polymerase chain reaction study. Scand. J. Gastroent. 1996;31:383–390.
  3. Reubi JC, Waser B, Laderach U, Stettler C, Friess H, Halter F, Schmassmann A. Localization of cholecystokinin A and cholecystokinin B-gastrin receptors in the human stomach. Gastroenterology. 1997;112:1197–1205.
  4. Schmitz F, Goke MN, Otte JM, Schrader H, Reimann B, Kruse ML, Siegel EG, Peters J, Herzig KH, cFolsch UR, Schmidt WE. Cellular expression of CCK-A and CCK-B/gastrin receptors in human gastric mucosa. Regul. Pept. 2001;102:101–110.

Ji B, Bi Y, Simeone D, Mortensen RM, Logsdon CD. Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. Gastroenterology. 2001;121:1380–1390 6. Rivard N, Rydzewska G, Lods JS, Martinez J, Morisset J. Pancreas growth, tyrosine kinase, PtdIns 3-kinase, and PLD involve high-affinity CCK-receptor occupation. Am. J. Physiol. 1994;266:G62–G70 7. Herranz R. Cholecystokinin antagonists: pharmacological and therapeutic potential. Med. Res. Rev. 2003;23:559–605. 8. Jensen RT. CCKB-gastrin receptor antagonists. Recent advances and potential uses in gastric secretory disorders. Yale J. Biol. Med. 1996;69:245–259.. 9. Liddle RA. Cholecystokinin. In: Walsh JH, Dockray GJ, editors. Gut Peptides. New York: Raven Press; 1994. pp. 175–216. 10. Meyer BM, Werth BA, Beglinger C, Hildebrand P, Jansen JB, Zach D, Rovati LC, Stalder GA. Role of cholecystokinin in regulation of gastrointestinal motor functions. Lancet. 1989;2:12–15 11. Low-Beer TS, Harvey RF, Davies ER, Read AF. Abnormalities of serum cholecystokinin and gallbladder emptying in celiac disease. N. Engl. J. Med. 1975;292:961–963. 12. Nousia-Arvanitakis S, Fotoulaki M, Tendzidou K, Vassilaki C, Agguridaki C, Karamouzis M. Subclinical exocrine pancreatic dysfunction resulting from decreased cholecystokinin secretion in the presence of intestinal villous atrophy. J Pediatr. Gastroenterol. Nutr. 2006;43:307–312. 13. Creutzfeldt W. Malabsorption due to cholecystokinin deficiency in a patient with autoimmune polyglandular syndrome type I. N. Engl. J. Med. 2001;345:65. 14. Monstein HJ, Nylander AG, Salehi A, Chen D, Lundquist I, Hakanson R. Cholecystokinin-A and cholecystokinin-B/gastrin receptor mRNA expression in the gatrointestinal tract and pancreas of the rat and man. A polymerase chain reaction study. Scand. J. Gastroent. 1996;31:383–390. 15. Wank SA, Pisegna JR, DeWeerth A. Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann. N. Y. Acad. Sci. 1994;713:49–66. 16. Morisset J, Wong H, Walsh JH, Laine J, Bourassa J. Pancreatic CCK(B) receptors: their potential roles in somatostatin release and delta-cell proliferation. Am. J. Physiol. (Gastrointest. Liver Physiol. 1) 2000;279:G148–G156. 17. Ji B, Bi Y, Simeone D, Mortensen RM, Logsdon CD. Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. Gastroenterology. 2001;121:1380–1390. 18. Adler G, Beglinger C, Braun U, Reinshagen M, Koop I, Schafmayer A, Rovati L, Arnold R. Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology. 1991;100:537–543. 19. Beglinger C. Potential role of cholecystokinin in the development of acute pancreatitis. Digestion. 1999;60:61–63. 20. Tachibana I, Shirohara H, Czako L, Akiyama T, Nakano S, Watanabe N, Hirohata Y, Otsuki M. Role of endogenous cholecystokinin and cholecystokinin-A receptors in the development of acute pancreatitis in rats. Pancreas. 1997;14:113–121 21. Sato T, Niikawa J, Usui I, Imamura T, Yoshida H, Tanaka S, Mitamura K. Pancreatic regeneration after ethionine-induced acute pancreatitis in rats lacking pancreatic CCK-A receptor gene expression. J Gastroenterol. 2003;38:672–680. 22. Katz M, Carangelo R, Miller LJ, Gorelick F. Effect of ethanol on cholecystokinin-stimulated zymogen conversion in pancreatic acinar cells. Am. J. Physiol. 1996;270:G171–G175 23. Satoh A, Gukovskaya AS, Reeve JR, Jr, Shimosegawa T, Pandol SJ. Ethanol sensitizes NF-{kappa}B activation in pancreatic acinar cells through effects on protein kinase C-{epsilon} Am. J Physiol Gastrointest Liver Physiol. 2006;291:G432–G438 24. Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, Landt O, Becker M. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat. Genet. 2000;25:213–216. 25. Chen JM, Mercier B, Audrezet MP, Ferec C. Mutational analysis of the human pancreatic secretory trypsin inhibitor (PSTI) gene in hereditary and sporadic chronic pancreatitis. J Med. Genet. 2000;37:67–69. 26. Ochi K, Harada H, Satake K. Clinical evaluation of cholecystokinin-A- receptor antagonist (loxiglumide) for the treatment of acute pancreatitis. A preliminary clinical trial. Study Group of Loxiglumide in Japan. Digestion. 1999;60:81–85. 27. Katschinski M. Loxiglumide Rotta research. IDrugs. 2002;5:469–474. 28. Otsuki M. Pathophysiological role of cholecystokinin in humans. J. Gastroenterol. Hepatol. 2000;15:D71–D83. 29. Mossner J, Secknus R, Meyer J, Niederau C, Adler G. Treatment of pain with pancreatic extracts in chronic pancreatitis: results of a prospective placebo-controlled multicenter trial. Digestion. 1992;53:54–66. 30. Toskes PP. Feedback control of pancreatic exocrine secretion. Trans. Am. Clin. Climatological Assoc. 2001;112:61–67. 31. Mossner J, Secknus R, Meyer J, Niederau C, Adler G. Treatment of pain with pancreatic extracts in chronic pancreatitis: results of a prospective placebo-controlled multicenter trial. Digestion. 1992;53:54–66. 32. Jin HO, Song CW, Chang TM, Chey WY. Roles of gut hormones in negative-feedback regulation of pancreatic exocrine secretion in humans. Gastroenterology. 1994;107:1828–1834 33. Shiratori K, Takeuchi T, Satake K, Matsuno S. Clinical evaluation of oral administration of a cholecystokinin-A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose-response study in Japan. Pancreas. 2002;25:e1–e5. 34. Geoffroy H, el-Haddad A, Coudoux P. [Proglumide (milide) in gastroduodenal therapeutics] Sem. Hop. Ther. 1974;50:207–216. 35. Bergemann W, Consentius K, Braun HE, Hirschmann H, Marowski B, Munck A, Rehs HU, Stopik D, Wilke G. [Duodenal ulcer – multicenter double-blind study with proglumide] Med. Klin. 1981;76:226–229. 36. Beltinger J, Hildebrand P, Drewe J, Christ A, Hlobil K, Ritzel U, D’Amato M, Rovati L, Beglinger C. Effects of spiroglumide, a gastrin receptor antagonist, on acid secretion in humans. Eur. J. Clin. Invest. 1999;29:153–159. 37. Makovec F, Revel L, Letari O, Mennuni L, Impicciatore M. Characterization of antisecretory and antiulcer activity of CR 2945, a new potent and selective gastrin/CCK(B) receptor antagonist. Eur. J Pharmacol. 1999;369:81–90. 38. Chang RS, Lotti VJ, Monaghan RL, Birnbaum J, Stapley EO, Goetz MA, Albers-Schonberg G, Patchett AA, Liesch JM, Hensens OD, Springer JP. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from. Aspergillus Allicaceus. Science. 1985;230:177–179. 39. Lotti VJ, Chang RS. A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365,260. Eur. J. Pharmacol. 1989;162:273–280. 40. Kramer MS, Cutler NR, Ballenger JC, Patterson WM, Mendels J, Chenault A, Shrivastava R, Matzura-Wolfe D, Lines C, Reines S. A placebo-controlled trial of L-365-260, a CCKB antagonist, in panic disorder. Biol. Psychiatry. 1995;37:462–466. 41. Boyce M, Warrington S, Johnston A, Harris A. Effect on gastric pH of single doses of YF476, a new gastrin antagonist, compared with ranitidine and placebo. Br. J Clin Pharmacol. 2000;49:493P–494P. 42. Horwell DC, Hughes J, Hunter JC, Pritchard MC, Richardson RS, Roberts E, Woodruff GN. Rationally designed “dipeptoid”analogues of CCK. alpha-Methyltryptophan derivatives as highly selective and orally active gastrin and CCK-B antagonists with potent anxiolytic properties. J Med. Chem. 1991;34:404–414. 43. Nakamura T, Ozawa T, Kitagawa M, Takehira Y, Yamada M, Yasumi K, Tamakoshi K, Kobayashi Y, Nakamura H. Endoscopic resection of gangliocytic paraganglioma of the minor duodenal papilla: case report and review. Gastrointest. Endosc. 2002;55:270–273. 44. Buck IM, Black JW, Cooke T, Dunstone DJ, Gaffen JD, Griffin EP, Harper EA, Hull RA, Kalindjian SB, Lilley EJ, Linney ID, Low CM, McDonald IM, Pether MJ, Roberts SP, Shankley NP, Shaxted ME, Steel KI, Sykes DA, Tozer MJ, Watt GF, Walker MK, Wright L, Wright PT. Optimization of the in vitro and in vivo properties of a novel series of 2,4,5-trisubstituted imidazoles as potent cholecystokinin-2 (CCK2) antagonists. J Med. Chem. 2005;48:6803–6812. 45. Kalindjian SB, Buck IM, Davies JM, Dunstone DJ, Hudson ML, Low CM, McDonald IM, Pether MJ, Steel KI, Tozer MJ, Vinter JG. Non-peptide cholecystokinin-B/gastrin receptor antagonists based on bicyclic, heteroaromatic skeletons. J Med. Chem. 1996;39:1806–1815. 46. Lehmann F, Hildebrand P, Beglinger C. New molecular targets for treatment of peptic ulcer disease. Drugs. 2003;63:1785–1797. 47. Takaishi S, Cui G, Frederick DM, Carlson JE, Houghton J, Varro A, Dockray GJ, Ge Z, Whary MT, Rogers AB, Fox JG, Wang TC. Synergistic inhibitory effects of gastrin and histamine receptor antagonists on Helicobacter-induced gastric cancer. Gastroenterology. 2005;128:1965–1983. 48. Waldum HL, Brenna E. Personal review: is profound acid inhibition safe? Aliment. Pharmacol. Ther. 2000;14:15–22. 49. Ding WQ, Kuntz SM, Miller LJ. A misspliced form of the cholecystokinin-B/gastrin receptor in pancreatic carcinoma: role of reduced sellular U2AF35 and a suboptimal 3′-splicing site leading to retention of the fourth intron. Cancer Res. 2002;62:947–952. 50. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK, Jr, Amann ST, Toskes PP, Liddle RA, McGrath K, Uomo G, Post JC, Ehrlich GD. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat. Genet. 1996;14:141–145. 51. Whitcomb DC, Ulrich CD. 2. Hereditary pancreatitis: new insights, new directions. Baillieres Best Pract. Res. Clin. Gastroenterol. 1999;13:253–263. 52. Marchal-Victorion S, Vionnet N, Escrieut C, Dematos F, Dina C, Dufresne M, Vaysse N, Pradayrol L, Froguel P, Fourmy D. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics. 2002;12:23–30. 53. Lamers CB, Jansen JB, Woutersen RA. Cholecystokinin and gastrointestinal cancer. J. Steroid Biochem. Mol. Biol. 1990;37:1069–1072. 54. Reubi JC, Macke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl. Med. 2005;46 Suppl 1:67S–75S. 55. Weiner RE, Thakur ML. Radiolabeled peptides in oncology : role in diagnosis and treatment. BioDrugs. 2005;19:145–163. 56. Reubi JC, Schaer JC, Waser B. Cholecystokinin (CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res. 1997;57:1377–1386. 57. Behr TM, Behe MP. Cholecystokinin-B/gastrin receptor–Targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Sem. Nucl. Med. 2002;32:97–109. 58. Feinle C, Meier O, Otto B, D’Amato M, Fried M. Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut. 2001;48:347–355. 59. Deprez P, Sempoux C, Van Beers BE, Jouret A, Robert A, Rahier J, Geubel A, Pauwels S, Mainguet P. Persistent decreased plasma cholecystokinin levels in celiac patients under gluten-free diet: respective roles of histological changes and nutrient hydrolysis. Regul. Pept. 2002;110:55–63. 60. Castillo EJ, gado-Aros S, Camilleri M, Burton D, Stephens D, O’Connor-Semmes R, Walker A, Shachoy-Clark A, Zinsmeister AR. Effect of oral CCK-1 agonist GI181771X on fasting and postprandial gastric functions in healthy volunteers. Am. J Physiol Gastrointest Liver Physiol. 2004;287:G363–G369. 61. Chua A, Bekkering M, Rovati LC, Keeling PWN. Clinical efficacy and prokinetic effect of the CCK-A antagonist loxiglumide in non-ulcer dyspepsia. Gastroenterology. 1993;104:A491. 62. Morton MF, Welsh NJ, Tavares IA, Shankley NP. Pharmacological characterization of cholecystokinin receptors mediating contraction of human gallbladder and ascending colon. Regul. Pept. 2002;105:59–64. 63. Barrow L, Blackshaw PE, Wilson CG, Rovati L, Beglinger C. Selective slowing of proximal colon transit in irritable bowel syndrome by the cholecystokinin-receptor anatagonist, loxiglumide. Eur. J Gastroenterol. Hepatol. 1994;6:381–387. 64. Fisher RS, DiMarino AJ, Cohen S. Mechanism of cholecystokinin inhibition of lower esophageal sphincter pressure. Am. J Physiol. 1975;228:1469–1473. 65. Trudgill NJ, Hussain FN, Moustafa M, Ajjan R, D’Amato M, Riley SA. The effect of cholecystokinin antagonism on postprandial lower oesophageal sphincter function in asymptomatic volunteers and patients with reflux disease. Aliment. Pharmacol Ther. 2001;15:1357–1364. 66. Boeckxstaens GE, Hirsch DP, Fakhry N, Holloway RH, D’Amato M, Tytgat GN. Involvement of cholecystokininA receptors in transient lower esophageal sphincter relaxations triggered by gastric distension. Am. J Gastroenterol. 1998;93:1823–1828. 67. Hirsch DP, Mathus-Vliegen EM, Holloway RH, Fakhry N, D’Amato M, Boeckxstaens GE. Role of CCK(A) receptors in postprandial lower esophageal sphincter function in morbidly obese subjects. Dig. Dis. Sci. 2002;47:2531–2537. 68. Miyasaka K, Takata Y, Funakoshi A. Association of cholecystokinin A receptor gene polymorphism with cholelithiasis and the molecular mechanisms of this polymorphism. J Gastroenterol. 2002;37 Suppl 14:102–106. 69. Takata Y, Takeda S, Kawanami T, Takiguchi S, Yoshida Y, Miyasaka K, Funakoshi A. Promoter analysis of human cholecystokinin type-A receptor gene. J Gastroenterol. 2002;37:815–820. 70. Koda M, Ando F, Niino N, Shimokata H, Miyasaka K, Funakoshi A. Association of cholecystokinin 1 receptor and beta3-adrenergic receptor polymorphisms with midlife weight gain. Obes. Res. 2004;12:1212–1216. 71. Marchal-Victorion S, Vionnet N, Escrieut C, Dematos F, Dina C, Dufresne M, Vaysse N, Pradayrol L, Froguel P, Fourmy D. Genetic, pharmacological and functional analysis of cholecystokinin-1 and cholecystokinin-2 receptor polymorphism in type 2 diabetes and obese patients. Pharmacogenetics. 2002;12:23–30.    


Regular Issue Subscription Review Article
Volume 02
Issue 02
Received March 21, 2024
Accepted April 22, 2024
Published May 15, 2024