Management of Lead Acid Battery System in Electric Vehicles

Year : 2024 | Volume :02 | Issue : 01 | Page : 19-28
By

Palak Gaur,

Arun Kumar,

Sushil Kumar Agrawal,

Rachit Srivastava,

Jay Bahadur Singh,

Tej Prakash Verma,

  1. Student Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh India
  2. Associate Professor Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh India
  3. Professor Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh India
  4. Assistant Professor Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh
  5. Assistant Professor Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh India
  6. Assistant Professor Department of Electrical Engineering Bansal Institute of Engineering and Technology, Lucknow Uttar Pradesh India

Abstract

To determine the lead-acid battery’s state of charge in electric vehicles, a novel coulometric method is presented in this article. There are two major problems with the main state of charge algorithms that are currently in use: one defines the state of charge incorrectly for applications involving electric vehicles, and the other uses the accumulator’s static performance sub-optimally to estimate its state under dynamic stresses. To address these two shortcomings, we suggest a novel coulometric algorithm that is connected to the electric vehicle’s performance. The virtually discharged ampere-hours are determined by using statistical equivalency coefficients on the actual current profile. A considerable improvement with less than 5% errors in all cases examined is shown by the evaluation of this new algorithm on actual discharges.

Keywords: Electric vehicles, lead-acid battery, lead-corrosive, Manufacturers, Analytical models

[This article belongs to International Journal of Electro-Mechanics and Material Behavior(ijemb)]

How to cite this article: Palak Gaur, Arun Kumar, Sushil Kumar Agrawal, Rachit Srivastava, Jay Bahadur Singh, Tej Prakash Verma. Management of Lead Acid Battery System in Electric Vehicles. International Journal of Electro-Mechanics and Material Behavior. 2024; 02(01):19-28.
How to cite this URL: Palak Gaur, Arun Kumar, Sushil Kumar Agrawal, Rachit Srivastava, Jay Bahadur Singh, Tej Prakash Verma. Management of Lead Acid Battery System in Electric Vehicles. International Journal of Electro-Mechanics and Material Behavior. 2024; 02(01):19-28. Available from: https://journals.stmjournals.com/ijemb/article=2024/view=156144

Browse Figures

References

  1. Caumont, “Détermination de 1’état de charge d’une batterie Plomb acide en utilization véhicule électrique,” Thèse de doctorat, université de Lille, Novembre 1997.
  2. S. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. on Energy Conversion, -mécanismes de dégradation des batteries plomb-acide à recombinaison de gaz lots des tests de cyclage et de surcharge,” Thèse de doctorat, Université de Lille, 1996.
  3. Nugues, “Mesure de l’état de charge d’une batterie par coulométriecorrigée par impédancemétrie,” Thèse de doctorat, INPG, Octobre 1996.
  4. Smimite, “Etude du comportement et gestion d’une batterie au plomb à recombinaisonéquipant un vehiculeélectrique,” Thèse de doctorat, Université de Montpellier 11, November 1997.
  5. Brissaud, “Etude morphologique et structurale des mécanismes de dégradation des batteries plomb-acide à recombinaison de gaz lots des tests de cyclage et de surcharge,” Thèse de doctorat, Université de Lille, 1996
  6. Winsel, E. Voss, and U. Hullmeine, “The agregate of spheres model of the Pb0 /PbS0 electrode,” Journal of Power Sources, no. 30, p. 209, 1990
  7. Berndt, Maintenance-Free Battery, A Handbook of BatteryTechnology, 1993.
  8. Bode, Lead Acid Batteries: Wiley Interscience, 1977.
  9. A. Kiehne, et al., Batteries-Fundamentals and Theory, Running Techniques, Outlook: Expert Verlag, 1989.
  10. Karden, P. Mauracher, and A. Lohner, “Battery management system for energy-efficient battery operation: Strategy and practical experience,” EVS 13, vol. 2, p. 91, 1996.
  11. K. Song and K. H. Kim, “A dynamic state of charge model for electric vehicle batteries,” EVS 12, vol. 2, p. 519, 1994.
  12. Guogang, L. Jianming, and J. Hang, “A new battery state of charge indicator for electric vehicles,” EVS 13, vol. 2, p. 631, 1996.
  13. Kitagawa, “Development of battery state of charge indicator for electric vehicles,” EVS 12, vol. 1, p. 293, 1994.
  14. F. Riutort, “Etude et réalization d’une jauge coulométrique universelle destinée au véhicule électrique,” Mémoire CNAM Grenoble, 1994.
  15. F. Riutort, E. Rulliere, and E. Toutain, “An improved coulometric gauge for electric vehicles,” in EVT’95, 1995.
  16. A. Lynch and Z. M. Salameh, “Realistic electric vehicle battery evaluation,” IEEE Trans. on Energy Conversion, vol. 12, no. 4, pp. 407–412, Dec. 1997
  17. Affanni, Antonio, et al. “Battery choice and management for new-generation electric vehicles.” IEEE transactions on industrial electronics 52.5 (2005): 1343-1349.
  18. Zau, Andre T. Puati, et al. “A battery management strategy in a lead-acid and lithium-ion hybrid battery energy storage system for conventional transport vehicles.” Energies 15.7 (2022): 2577.
  19. Garche, J., P. T. Moseley, and Eckhard Karden. “Lead–acid batteries for hybrid electric vehicles and battery electric vehicles.” Advances in battery technologies for electric vehicles. Woodhead Publishing, 2015. 75-101
  20. McKinney, Bryan L., Gary L. Wierschem, and Edward N. Mrotek. “Thermal management of lead-acid batteries for electric vehicles.” SAE Transactions (1983): 839-845.
  21. Liu, Wei, Tobias Placke, and K. T. Chau. “Overview of batteries and battery management for electric vehicles.” Energy Reports 8 (2022): 4058-4084.
  22. Cooper, Allan, and Patrick Moseley. “Progress in the development of lead-acid batteries for hybrid electric vehicles.” 2006 IEEE Vehicle Power and Propulsion Conference. IEEE, 2006.
  23. Conte, Fiorentino Valerio. “Battery and battery management for hybrid electric vehicles: a review.” e & i Elektrotechnik und Informationstechnik 123.10 (2006): 424-431.
  24. Juang, Larry W., et al. “System identification-based lead-acid battery online monitoring system for electric vehicles.” 2010 IEEE Energy Conversion Congress and Exposition. IEEE, 2010.
  25. Oman, Henry. “On-board energy and power management on electric vehicles: effect of battery type.” 17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No. 98CH36267). Vol. 2. IEEE, 1998.
  26. Bullock, K. R., et al. “Performance of improved lead acid batteries for electric vehicles.” Proceedings of the Symposium on Advances in Lead-Acid Batteries. Vol. 84. No. 14. Battery Division, Electrochemical Society, 1984.
  27. Liu, Yow-Chyi. “Battery management systems for improving battery efficiency in electric vehicles.” World Electric vehicle journal 4.2 (2010): 351-357.
  28. Kasprzyk, Leszek. “Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles.” Eksploatacja i Niezawodność 19.2 (2017): 229-236.
  29. Singh, Anupama, P. B. Karandikar, and N. R. Kulkarni. “Mitigation of sulfation in lead acid battery towards life time extensiosn using ultra capacitor in hybrid electric vehicle.” Journal of Energy Storage 34 (2021): 102219.
  30. Vasebi, A., S. M. T. Bathaee, and M. Partovibakhsh. “Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter.” Energy Conversion and Management 49.1 (2008): 75-82.

Regular Issue Subscription Original Research
Volume 02
Issue 01
Received May 23, 2024
Accepted June 12, 2024
Published July 12, 2024