Environmental Impact of Ghaf Tree (Prosopis cineraria) on Heavy Metals Concentration in Atmosphere

Year : 2024 | Volume :01 | Issue : 01 | Page : 1-7
By

Nizar A. Al Haj Ali

Ideisan Abu-Abdoun

Zohuir A. Albalawna

Khawla A. Al-Shurafa

Nadeen S. Sweisah

  1. Chemist National Laboratories Department, Ministry of Climate Change and Environment Sharjah United Arab Emirates
  2. Professor Department of Chemistry, University of Sharjah, Sharjah United Arab Emirates
  3. Chemist National Laboratories Department, Ministry of Climate Change and Environment Sharjah United Arab Emirates
  4. Chemist National Laboratories Department, Ministry of Climate Change and Environment Sharjah United Arab Emirates
  5. Chemist National Laboratories Department, Ministry of Climate Change and Environment Sharjah United Arab Emirates

Abstract

The Ghaf is a hardy tree, drought-resistant, and can grow up to ten meters in height, it tree produces small, yellow flowers which attractive to many habitats, like bees, insects, and birds. The leaves and pods of the Ghaf tree have significant antioxidant and anti-inflammatory properties and can be used in new drug development. Ghaf trees can adapt to changing environmental conditions and planting Ghaf trees could be an effective strategy for mitigating climate change in arid regions. The planting and restoration of the Ghaf tree is mostly found in the northern part of the UAE with a unique appearance. In this study, leaf samples were collected from different regions of Sharjah city (UAE), at different distances from traffic roads. The concentration of heavy metals such as; Iron (Fe), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Chromium (Cr), Cadmium (Cd), Lead (Pb), and Boron (B), in leaves of Ghaf (Prosopis cineraria) tree leaves was measured using Inductively coupled plasma with mass spectroscopy (ICP-MS) various location of Sharjah. The average metal concentrations found in open area locations and far from highways and populated cities in ppm were Fe (381.91), Mn (12.60), Co (0.23), Ni (3.14), Cu (5.45), Zn (8.84), Cr (1.07), Cd (0), Pb (0.94) and B (253.68), and when these metals concentration was measured and compared in crowded locations close to industrial areas the average metals concentration in tree leaves samples was found to be in higher concentrations as follows; Fe (686.30), Mn (27.84), Co (0.53), Ni (5.84), Cu (6.57), Zn (18.89), Cr (3.14), Cd (0.007), Pb (2.06) and B (93.19). This variation in metal concentration in Ghaf tree (Prosopis cineraria) leaves indicates the ability of this tree to intake the pollutants from the atmosphere and thus can work as a pollutant marker besides being an ecological and cultural heritage.

Keywords: Al-Ghaf (Prosopis cineraria) tree, Prosopis cineraria, Concentration of heavy metals. Air pollution markers, United Arab Emirates

[This article belongs to International Journal of Mineral(ijmi)]

How to cite this article: Nizar A. Al Haj Ali, Ideisan Abu-Abdoun, Zohuir A. Albalawna, Khawla A. Al-Shurafa, Nadeen S. Sweisah. Environmental Impact of Ghaf Tree (Prosopis cineraria) on Heavy Metals Concentration in Atmosphere. International Journal of Mineral. 2024; 01(01):1-7.
How to cite this URL: Nizar A. Al Haj Ali, Ideisan Abu-Abdoun, Zohuir A. Albalawna, Khawla A. Al-Shurafa, Nadeen S. Sweisah. Environmental Impact of Ghaf Tree (Prosopis cineraria) on Heavy Metals Concentration in Atmosphere. International Journal of Mineral. 2024; 01(01):1-7. Available from: https://journals.stmjournals.com/ijmi/article=2024/view=0

References

  1. Druce. “Prosopis cineraria” Catalogue of Life. Integrated Taxonomic Information System and Species2000. 2012-03-15. Retrieved 2012-03-21.
  2. Lemons, J., Victor, R., and Schaffer, D. 2003. Conserving Biodiversity in Arid Regions: Best Practices in Developing Nations (Springer).
  3. Philp, Myra (2013-06-17). “UAE groups help to save Al-Ghaf trees on UN ‘Combat Desertification Day’“. 7 DAYS in Dubai. Al Sidra Media. Archived from the original on 2013-10-12. Retrieved 2018-03-21.
  4. Al Yamani, S.R. Green, R. Pangilinan, Steve Dixon. “Sap flow in Al Ghaf trees growing in the hyper-arid desert of Abu Dhabi”, November 2018. Acta Horticulture 1222(1222):127-134 DOI:10.17660/ActaHortic.2018.1222.28
  5. Imen Ben Salema, Maisa El Gamala, Manish Sharmaa, Fares M. Howaria, Yousef Nazzala, Cijo Xaviera, Fareeda M. Almenhalia. 7th International Conference on Advances on Clean Energy Research, ICACER 2022, April 20–22, 2022, Barcelona, Spain. “Characterization of biochar produced from Al Ghaf Tree for CO2 Capture”. Energy Reports, vol. 8, supplement 16, December 2022, Pages 525-532.
  6. May Faraj and Robert Davies “Impact of Climate Change on Ancient Trees in the Middle East map marker United Arab Emirates, 17 March,
  7. Abdullah Aksu. “Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). Journal of Environmental Health Science & Engineering (2015) 13:79 DOI 10.1186/s40201-015-0224-9
  8. Viard B, Pihan F, Promeyrat S, Pihan JC. “Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, graminaceae, and land snails”. Chemosphere. 2004; 55:1349–1359. doi 10.1016/j.chemosphere.2004.01.003.
  9. Onder S, Dursun Ş. Air borne heavy metal pollution of cedrus libani (A. Rich.) in the city Centre of Konya (Turkey) Atmos Environ. 2006; 4:1122–11 1133. doi: 10.1016/j.atmosenv.2005.11.006.
  10. Olowoyo JO, Heerden EV, Fischer JL. Investigating jacaranda mimosifolia tree as biomonitor of atmospheric trace metals. Environ Monit Assess. 2010; 164:435–443. doi: 10.1007/s10661-009-0904-y.
  11. Odukoya OO, Arawola TA, Bamgboe O. “Pb, Zn and Cu Levels in tree bark as indicator of atmospheric pollution”. Environ Int. 2000; 26:11–16. doi: 10.1016/S0160-4120(00)00072-6.
  12. Jessica Briffa, Emmanuel Sinagra, Renald Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans”, Heliyon 6 (2020) e04691, https://doi.org/10.1016/j.heliyon. e04691
  13. Radojevic, M., & Bashkin, V. N. (1999). Practical Environmental Analysis (645 p.). Science Park, Cambridge, UK: Royal School of Chemistry, Thomas Graham House.
  14. Ideisan I Abu-Abdoun and Zohuir A Al-Balawna “Heavy Metals contents in Neem Tree (Azadirachta indica) Parts and Surroundings “. ACTA SCIENTIFIC MEDICAL SCIENCES (ISSN: 2582-0931) 3 (8) 1-5, 2019
  15. Säumel, I. Kotsyuk, M. Hölscher, C. Lenkereit, F. Weber, I. Kowarik, “ How healthy is urban horticulture in high traffic areas Trace metal concentrations in vegetable crops from plantings within inner city neighborhoods in Berlin, Germany”, Environ. Pollut. 165 124-132 (2012)
  16. Kinnersley, L. Scott, Aerial contamination of fruit through wet deposition and particulate dry deposition, J. Environ. Radioact. 52, 191–213, (2001)
  17. Birbaum, R. Brogioli, M. Schellenberg, E. Martinoia, W.J. Stark, D. Günther, L.K. Limbach, “No evidence for cerium dioxide nanoparticle translocation in maize plants”, Environ. Sci. Technol. 44, 8718–8723, (2010)
  18. Mohammed T Khathi, Afaq Talib Farhood, and Ali H. Issmer “Determination of some heavy metals in the extraction of plants by using AAS Technique”, Journal of Natural Sciences Research, 6 (8), 130-137, (2016)
  19. Observation: Prosopis cineraria (L.) World flora (Plants of the world flora), 9 Mar. 2024. from identify.plantnet.org.

Regular Issue Subscription Review Article
Volume 01
Issue 01
Received May 4, 2024
Accepted June 1, 2024
Published July 10, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}