Current Drugs Target the EGFR

Year : 2024 | Volume :13 | Issue : 02 | Page : 1-8
By

Farhan Usman Billoo

Cori Newton

  1. Researcher Department of Biology California State University Channel Islands United States
  2. Associate Professor Department of Natural sciences Gordon state College, Barnesville, GA United States

Abstract

Cancer is a devastating disease, but there have recently been significant advancements in therapy that have identified EGFR and its related proteins as valuable indicators and targets for treatment. The ERBB receptor tyrosine kinase superfamily includes EGFR, which is a transmembrane glycoprotein. When the EGFR receptor interacts to its particular ligand, EGF, it causes tyrosine residues to be phosphorylated and forms receptor dimers with other members of the receptor family. Over time, this mechanism causes cells to proliferate uncontrollably. Clinicians may now precisely diagnose and treat specific patient populations because to the development of various anti-EGFR treatments, including tyrosine kinase inhibitors and monoclonal antibodies. In this review, we looked at how EGFR activation works and how EGFR signaling contributes to cancer progression. Also, targeting the EGFR signaling system has recently yielded promising results for the treatment of epithelial cancers. Also included is a synopsis of the many therapeutic drugs that are now in use to block EGFR. One complex network that has emerged as a potential therapeutic target for cancer treatment is EGFR signaling. But we need a better understanding of the system to find a cancer treatment that works. Combining an anti-EGFR agent with a chemotherapeutic or chemo preventive medication is a complex technique that could be improved upon to create a molecularly targeted treatment that is both appealing and highly effective.

Keywords: EGFR, Drugs, Cellular processes, Pyrotinib, Cancer, Tumor

[This article belongs to Research & Reviews : A Journal of Medical Science and Technology(rrjomst)]

How to cite this article: Farhan Usman Billoo, Cori Newton. Current Drugs Target the EGFR. Research & Reviews : A Journal of Medical Science and Technology. 2024; 13(02):1-8.
How to cite this URL: Farhan Usman Billoo, Cori Newton. Current Drugs Target the EGFR. Research & Reviews : A Journal of Medical Science and Technology. 2024; 13(02):1-8. Available from: https://journals.stmjournals.com/rrjomst/article=2024/view=0

References

  1. Abourehab, M. A. S., Alqahtani, A. M., Youssif, B. G. M., & Gouda, A. M. (2021, November 4). Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules, 26(21), 6677. https://doi.org/10.3390/molecules26216677
  2. Sooro, M. A., Zhang, N., & Zhang, P. (2018). Targeting EGFR‐mediated autophagy as a potential strategy for cancer therapy. International journal of cancer, 143(9), 2116-2125.
  3. Xuhong, J. C., Qi, X. W., Zhang, Y., & Jiang, J. (2019). Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. American journal of cancer research, 9(10), 2103.
  4. Soria, J. C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K. H., … & Ramalingam, S. S. (2018). Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. New England journal of medicine, 378(2), 113-125.
  5. Masters, G. A., Temin, S., Azzoli, C. G., Giaccone, G., Baker, S., Brahmer, J. R., Ellis, P. M., Gajra, A., Rackear, N., Schiller, J. H., Smith, T. J., Strawn, J. R., Trent, D., & Johnson, D. H. (2015, October 20). Systemic Therapy for Stage IV Non–Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. Journal of Clinical Oncology, 33(30), 3488–3515. https://doi.org/10.1200/jco.2015.62.1342
  6. Chen, Q., Ouyang, D., Anwar, M., Xie, N., Wang, S., Fan, P., … & Ouyang, Q. (2021). Corrigendum: effectiveness and safety of pyrotinib, and association of biomarker with progression-free survival in patients with HER2-positive metastatic breast cancer: a real-world, multicentre analysis. Frontiers in Oncology, 11, 661128.
  7. Li, H. S., Yang, G. J., Cai, Y., Li, J. L., Xu, H. Y., Zhang, T., … & Wang, Y. (2022). Dacomitinib for advanced non-small cell lung cancer patients harboring major uncommon EGFR alterations: a dual-center, single-arm, Ambispective cohort study in China. Frontiers in Pharmacology, 13, 919652.
  8. Endersby, R., Whitehouse, J., Hii, H., Greenall, S. A., Johns, T. G., & Gottardo, N. G. (2018). A pre-clinical assessment of the pan-ERBB inhibitor dacomitinib in pediatric and adult brain tumors. Neoplasia, 20(5), 432-442.
  9. Han, X., Zhang, Y., Li, Y., Lin, Z., Pei, X., Feng, Y., … & Li, C. (2022). Pyrotinib Targeted EGFR-STAT3/CD24 Loop-Mediated Cell Viability in TSC. Cells, 11(19), 3064.
  10. Rangachari, D., Yamaguchi, N., VanderLaan, P. A., Folch, E., Mahadevan, A., Floyd, S. R., Uhlmann, E. J., Wong, E. T., Dahlberg, S. E., Huberman, M. S., & Costa, D. B. (2015, April). Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer, 88(1), 108–111. https://doi.org/10.1016/j.lungcan.2015.01.020
  11. Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, Kim SB, Moy B, Delaloge S, Gradishar W, Masuda N. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with≥ 2 HER2-directed regimens: phase III NALA trial. Journal of Clinical Oncology. 2020 Sep 9;38(27):3138.
  12. Ma, C. X., Bose, R., Gao, F., Freedman, R. A., Telli, M. L., Kimmick, G., … & Ellis, M. J. (2017). Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer. Clinical Cancer Research, 23(19), 5687-5695.
  13. Mas, Jean-Louis, et al. “Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke.” New England Journal of Medicine 377.11 (2017): 1011-1021.
  14. Cunningham, N., Shepherd, S., Mohammed, K., Lee, K. A., Allen, M., Johnston, S., … & Okines, A. F. (2022). Neratinib in advanced HER2-positive breast cancer: experience from the royal Marsden hospital. Breast Cancer Research and Treatment, 195(3), 333-340.
  15. Al-Showimi M, Al-Yousef N, Alharbi W, Alkhezayem S, Almalik O, Alhusaini H, Alghamdi A, Al-Moghrabi N. MicroRNA‑126 expression in the peripheral white blood cells of patients with breast and ovarian cancer is a potential biomarker for the early prediction of cancer risk in the carriers of methylated BRCA1. Oncology Letters. 2022 Aug 1;24(2):1-9.
  16. Halder, S., Basu, S., Lall, S. P., Ganti, A. K., Batra, S. K., & Seshacharyulu, P. (2023). Targeting the EGFR signaling pathway in cancer therapy: What’s new in 2023?. Expert Opinion on Therapeutic Targets, 27(4-5), 305-324.

Regular Issue Subscription Original Research
Volume 13
Issue 02
Received April 11, 2024
Accepted April 12, 2024
Published July 4, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}