Impact of Therapeutics on Carbapenem-Resistant Acinetobacter baumannii

Year : 2024 | Volume : | : | Page : –
By

Raj Nandini

Deepanshi Kaura

Reema Gabrani

  1. Students Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh India
  2. Students Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida Uttar Pradesh India
  3. Professor Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida Uttar Pradesh India

Abstract

Acinetobacter baumannii, a formidable pathogen in healthcare settings, poses a significant threat due to its propensity to cause nosocomial infections. This bacterium exhibits several attributes that enable it to evade the human body’s natural defenses. A. baumannii’s remarkable adaptability is highlighted by its ease in acquiring antibiotic resistance determinants, rendering it challenging to treat. Its ability to thrive in hospital environments underscores the urgent need for stringent infection control practices and enhanced sanitation measures. Its resistance to beta-lactam antibiotics and its unique ability to form biofilms – resilient communities of microorganisms adhering to surfaces, offers a protective shield against antibiotics and promote the exchange of genetic material.
This review delves into the intricacies of A. baumannii’s resistance to well-known antibiotics, like Carbapenems, biofilm formation, aminoglycoside-modifying enzymes, antibiotic-hydrolysing genes, overexpression of efflux pumps, and alteration of outer membrane porins. We examine the various factors that influence resistance phenotypes and genes within biofilms through mechanisms such as conjugation and transformation. In addition, we investigate both intrinsic and extrinsic factors affecting the biofilm formation process, including surface properties, growth conditions, and growth medium.
Device-related infections associated with A. baumannii colonization are a significant concern in healthcare. Research into novel antimicrobial agents and the development of rapid diagnostic tools are vital steps toward mitigating the impact of A. baumannii in clinical settings. The review outlines various strategies for preventing A. baumannii resistance, including the use of antibiotic combinations, monoclonal antibodies, quorum sensing inhibitors, efflux pump inhibitors, antimicrobial peptides, and phage therapy. Understanding the multifaceted attributes of A. baumannii, and its mechanisms of resistance is critical for developing effective interventions to combat this challenging pathogen in healthcare settings.

Keywords: Aminoglycoside-modifying enzymes; Antibiotic resistance; Antimicrobial peptides; Biofilm; Efflux pumps; Nosocomial infections

How to cite this article: Raj Nandini, Deepanshi Kaura, Reema Gabrani. Impact of Therapeutics on Carbapenem-Resistant Acinetobacter baumannii. Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-.
How to cite this URL: Raj Nandini, Deepanshi Kaura, Reema Gabrani. Impact of Therapeutics on Carbapenem-Resistant Acinetobacter baumannii. Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-. Available from: https://journals.stmjournals.com/rrjomv/article=2024/view=0


References

  1. -H. Wang, Y.-S. Leu, N.-Y. Wang, C.-P. Liu, and T.-R. Yan, “Prevalence of different carbapenemase genes among carbapenem-resistant Acinetobacter baumannii blood isolates in Taiwan,” Antimicrobial Resistance & Infection Control, vol. 7, no. 1, Oct. 2018, doi: https://doi.org/10.1186/s13756-018-0410-5.
  2. Peechanika Chopjitt, Thidathip Wongsurawat, Piroon Jenjaroenpun, Parichart Boueroy, Rujirat Hatrongjit, and Anusak Kerdsin, “Complete Genome Sequences of Four Extensively Drug-Resistant Acinetobacter baumannii Isolates from Thailand,” Microbiology resource announcements, vol. 9, no. 40, Oct. 2020, doi: https://doi.org/10.1128/mra.00949-20.
  3. Howard, M. O’Donoghue, A. Feeney, and R. D. Sleator, “Acinetobacter baumannii,” Virulence, vol. 3, no. 3, pp. 243–250, May 2012, doi: https://doi.org/10.4161/viru.19700.
  4. Shahraki Zahedani and R. Javadi , “Evaluation of Antibiotic Resistance Patterns and Frequency of Carbapenemase-Producing Acinetobacter baumannii Isolates by the Carbacineto NP Test,” Medical Laboratory Journal, vol. 12, no. 2, pp. 13–19, Mar. 2018, doi: https://doi.org/10.29252/mlj.12.2.13.
  5. Lv et al., “Faucet aerators as a reservoir for Carbapenem-resistant Acinetobacter baumannii: a healthcare-associated infection outbreak in a neurosurgical intensive care unit,” Antimicrobial Resistance & Infection Control, vol. 8, no. 1, Dec. 2019, doi: https://doi.org/10.1186/s13756-019-0635-y.
  6. Sycz et al., “Modern Acinetobacter baumannii clinical isolates replicate inside spacious vacuoles and egress from macrophages,” PLOS Pathogens, vol. 17, no. 8, p. e1009802, Aug. 2021, doi: https://doi.org/10.1371/journal.ppat.1009802.
  7. Cesur, S. Kınıklı, S. Cesur, M. Yücel, Ç. Ataman Hatipoğlu, and B. Dinç, “Determination of polymyxin B, minocycline, colistin and phosphomycin susceptibilities in Acinetobacter baumannii strains showing carbapenem resistant multidrug resistance phenotype,” Journal of Health Sciences and Medicine, Dec. 2018, doi: https://doi.org/10.32322/jhsm.456990.
  8. Jin, F. Qiu, H. Ji, and Q. Lu, “Analysis of drug resistance in 1,861 strains of Acinetobacter baumannii,” Biomedical Reports, vol. 4, no. 4, pp. 463–466, Feb. 2016, doi: https://doi.org/10.3892/br.2016.598.
  9. Abdullah, P. C. Iwen, and B. Abdalhamid, “Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates from Clinical Specimens,” Microbiology Resource Announcements, vol. 10, no. 29, Jul. 2021, doi: https://doi.org/10.1128/mra.00571-21.
  10. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021 Mar 19;10(3):373. doi: 10.3390/pathogens10030373. PMID: 33808905; PMCID: PMC8003822. (resistance mechanisms)
  11. Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Front Med (Lausanne). 2022 Mar 24;9:793615. doi: 10.3389/fmed.2022.793615. PMID: 35402433; PMCID: PMC8987773.
  12. TÜNAY, T. DEMİRDAL, and N. DEMİRTÜRK, “HASTANE KAYNAKLI PAN DRUG RESİSTANT ACİNETOBACTER BAUMANNİİ ENFEKSİYONLARINDA RİSK FAKTÖRLERİNİN ARAŞTIRILMASI,” Acta Medica Alanya, Oct. 2019, doi: https://doi.org/10.30565/medalanya.543371.
  13. Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021 Sep 9;8(1):48. doi: 10.1186/s40779-021-00343-2. PMID: 34496967; PMCID: PMC8425997.
  14. Mandal Santi M. , Roy Anupam , Ghosh Ananta K. , Hazra Tapas K. , Basak Amit , Franco Octavio L.; Challenges and future prospects of antibiotic therapy: from peptides to phages utilization; Frontiers in Pharmacology; 5; 2014; https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2014.00105 ; DOI:10.3389/fphar.2014.00105
  15. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage Therapy for a Multidrug-Resistant Acinetobacter baumannii Craniectomy Site Infection. Open Forum Infect Dis. 2018 Mar 23;5(4):ofy064. doi: 10.1093/ofid/ofy064. PMID: 29687015; PMCID: PMC5905571.
  16. Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses. 2023 Mar 3;15(3):673. doi: 10.3390/v15030673. PMID: 36992382; PMCID: PMC10057898.
  17. Nielsen TB, Pantapalangkoor P, Luna BM, Bruhn KW, Yan J, Dekitani K, Hsieh S, Yeshoua B, Pascual B, Vinogradov E, Hujer KM, Domitrovic TN, Bonomo RA, Russo TA, Lesczcyniecka M, Schneider T, Spellberg B. Monoclonal Antibody Protects Against Acinetobacter baumannii Infection by Enhancing Bacterial Clearance and Evading Sepsis. J Infect Dis. 2017 Aug 15;216(4):489-501. doi: 10.1093/infdis/jix315. PMID: 28931235; PMCID: PMC5853763.
  18. Yeganeh, O., Shabani, M., Pakzad, P. et al. Evaluation the reactivity of a peptide-based monoclonal antibody derived from OmpA with drug resistant pulsotypes of Acinetobacter baumannii as a potential therapeutic approach. Ann Clin Microbiol Antimicrob 21, 30 (2022). https://doi.org/10.1186/s12941-022-00523-51
  19. Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A, Yousefi M, Asgharzadeh M, Kafil HS. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect Drug Resist. 2020 Feb 12;13:423-434. doi: 10.2147/IDR.S228089. PMID: 32104014; PMCID: PMC7024869.
  20. Viehman, J.A., Nguyen, M.H. & Doi, Y. Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Drugs 74, 1315–1333 (2014). https://doi.org/10.1007/s40265-014-0267-8
  21. Vahhabi A, Hasani A, Rezaee MA, et al. Carbapenem resistance in Acinetobacter baumannii clinical isolates from northwest Iran: high prevalence of OXA genes in sync. Iran J Microbiol. 2021;13(3):282-293. doi:10.18502/ijm.v13i3.6388
  22. Li, S., Duan, X., Peng, Y. et al. Molecular characteristics of carbapenem-resistant Acinetobacter spp. from clinical infection samples and fecal survey samples in Southern China. BMC Infect Dis 19, 900 (2019). https://doi.org/10.1186/s12879-019-4423-3
  23. Bartal C, Rolston KVI, Nesher L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect Dis Ther. 2022;11(2):683-694. doi:10.1007/s40121-022-00597-w
  24. Nguyen, S.G. Joshi, Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: a scientific review, Journal of Applied Microbiology, Volume 131, Issue 6, 1 December 2021, Pages 2715–2738, https://doi.org/10.1111/jam.15130
  25. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013 Mar;37(2):130-55. doi: 10.1111/j.1574-6976.2012.00344.x. Epub 2012 Jun 18. PMID: 22568581.
  26. Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM, Bajaksouzian S, Benard MF, Jacobs MR, Bonomo RA, Adams MD. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio. 2014 Jan 21;5(1):e00963-13. doi: 10.1128/mBio.00963-13. Erratum in: MBio. 2015;6(3):e00585. PMID: 24449752; PMCID: PMC3903280

Ahead of Print Subscription Review Article
Volume
Received April 23, 2024
Accepted June 9, 2024
Published July 3, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}