Spatial variations of land surface temperature and its relationship with the type of land use/cover

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : June 14, 2024 at 4:56 pm | [if 1553 equals=””] Volume :11 [else] Volume :11[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 01 | Page : 1-16

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Asra Fathi, Ali Khazai, Fereshteh Doostvandi

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Department of Geography, Razi University, Kermanshah-Iran, Department of Geography, Razi University, Kermanshah-Iran, Department of Geography, Razi University, Kermanshah-Iran
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nEnvironmental parameters are intricately interdependent and affect nearby and sometimes distant components. Environmental parameters become more important when dealing directly with humans. Land surface temperature (LST) is one of the environmental parameters that when it is related to the city as the main center of human gathering, it is referred to as urban heat island (UHI). Land use/ Land cover (LU/LC) is one of the important environmental parameters that affect the temperature of the earth’s surface and heat island. In this research, using the Landsat 8 satellite image, the effect of LULC on the LST of Kermanshah and its outskirts was investigated. For this purpose, first the required pre-processing was done on the image of the desired date; Single-channel algorithm was used to prepare LST map and maximum likelihood algorithm was used to prepare LULC map. The temperature of the studied area was between 25 and 63 degrees Celsius. Among the five extracted LULC classes (water, vegetation, built, soil and rock), vegetation had the lowest average temperature (44.6 degrees Celsius) and soil had the highest average temperature (54.7 degrees Celsius). The reason why the temperature of the built areas was not high was the reflective roofs and the reason why the water temperature was not low (compared to the vegetation) was mixed pixels.

n

n

n

Keywords: Thermal island, LST, LULC, reflective roofs, Kermanshah city

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Geotechnical Engineering(joge)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Geotechnical Engineering(joge)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Asra Fathi, Ali Khazai, Fereshteh Doostvandi. Spatial variations of land surface temperature and its relationship with the type of land use/cover. Journal of Geotechnical Engineering. April 13, 2024; 11(01):1-16.

n

How to cite this URL: Asra Fathi, Ali Khazai, Fereshteh Doostvandi. Spatial variations of land surface temperature and its relationship with the type of land use/cover. Journal of Geotechnical Engineering. April 13, 2024; 11(01):1-16. Available from: https://journals.stmjournals.com/joge/article=April 13, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”] n


nn[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

1. Alavipanah, K., Khazai, A., & Hashemidarebadami, S. (2015). Assessment of influence of reflective roofs on reducing urban heat island effect by satellite images (A case study in Kermanshah). Journal of Urban-Regional Studies and Research, 7(25), 1-18.
2. Bakhshi Lomer, A. R., Rezaeian, M., Rezaei, H., Lorestani, A., Mijani, N., Mahdad, M., … & Arsanjani, J. J. (2023). Optimizing Emergency Shelter Selection in Earthquakes Using a Risk-Driven Large Group Decision-Making Support System. Sustainability, 15(5), 4019.
3. Felde, G. W., Anderson, G. P., Cooley, T. W., Matthew, M. W., Berk, A., & Lee, J. (2003, July). Analysis of Hyperion data with the FLAASH atmospheric correction algorithm. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477) (Vol. 1, pp. 90-92). IEEE.
4. Ghanbari, R., & Borna, K. (2021, March). Multivariate time-series prediction using LSTM neural networks. In 2021 26th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-5). IEEE.
5. Ghanbari, R., Heidarimozaffar, M., Soltani, A., & Arefi, H. (2023). Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. International Journal of Environmental Science and Technology, 1-20.
6. Grimmond, S. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.
7. Hashmi, S., Maleki, M., Jomezade, B., Hazeh, S., & Bagheri, K. (2019). Potential Evaluation of SMA and NSMA Methods Implementation to Extract Sub-pixel Impervious Surfaces from Landsat 8 Imagery (OLI), (Case Study: Sari). Geographic Thought, 10(20), 115-138.
8. Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11(10), 1840-1843.
9. Khandelwal, S., Goyal, R., Kaul, N., & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 87-94.
10. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources, 28(1), 205-241.
11. Lhissou, R., El Harti, A., Maimouni, S., & Adiri, Z. (2020). Assessment of the image-based atmospheric correction of multispectral satellite images for geological mapping in arid and semi-arid regions. Remote Sensing Applications: Society and Environment, 20, 100420.
12. Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., … & Wang, K. (2016). Potential and actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research: Atmospheres, 121(24), 14-372.
13. Maduako, I. D., Yun, Z., & Patrick, B. (2016). Simulation and prediction of land surface temperature (LST) dynamics within Ikom City in Nigeria using artificial neural network (ANN). Journal of Remote Sensing & GIS, 5(1), 1-7.
14. Maleki, M., Ahmadi, Z., & Dosti, R. (2019). Kermanshah land surface temperature changes in during 1393-1397 periods. Geography and Human Relationships, 2(3), 309-319.
15. Maleki, M., Tavakkoli Sabour, S. M., Zeaieanfirouzabadi, P., & Raeisi, M. (2018). Comparison of optic and radar data for terrain feature extraction. Journal of RS and GIS for Natural Resources, 9(2), 93-107.
16. Maleki, M., Van Genderen, J. L., Tavakkoli-Sabour, S. M., Saleh, S. S., & Babaee, E. (2020). Land use/cover change in Dinevar rural area of West Iran during 2000–2018 and its prediction for 2024 and 2030. Geogr. Tech, 15, 93-105.
17. Mamdoohi, A. R., Rezaei, H., Irannezhad, E., Saffarzadeh, A., & Abbasi, M. (2022). Hour-and Period-based congestion pricing, case of Tehran mode choice. Quarterly Journal of Transportation Engineering.
18. Meineke, E. K., Dunn, R. R., & Frank, S. D. (2014). Early pest development and loss of biological control are associated with urban warming. Biology letters, 10(11), 20140586.
19. Mo, Y., Xu, Y., Chen, H., & Zhu, S. (2021). A review of reconstructing remotely sensed land surface temperature under cloudy conditions. Remote Sensing, 13(14), 2838.
20. Naserieh, M (2015). Investigating temporal-spatial changes of Kermanshah thermal island and its relationship with air pollution using satellite images, Master’s Thesis, Department of Geography, Razi University.
21. Neinavaz, E., Skidmore, A. K., & Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. International Journal of Applied Earth Observation and Geoinformation, 85, 101984.
22. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
23. Otterman, J. (1974). Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science, 186(4163), 531-533.
24. Peng, J., Jia, J., Liu, Y., Li, H., & Wu, J. (2018). Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote sensing of Environment, 215, 255-267.
25. Phan, T. N., & Kappas, M. (2018). Application of MODIS land surface temperature data: a systematic literature review and analysis. Journal of Applied Remote Sensing, 12(4), 041501-041501.
26. Plocoste, T., Jacoby-Koaly, S., Molinié, J., & Petit, R. H. (2014). Evidence of the effect of an urban heat island on air quality near a landfill. Urban Climate,10, 745-757.
27. Rezaei, H., Irannezhad, E., & Mamdoohi, A. R. (2021). Heterogeneous analysis of mode choice behavior using latent class model. Journal of Transportation Research, 18(3), 61-74.
28. Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128.
29. Sadidi, J., Maleki, M., Rahmati, M., & TAVAKKOLI, S. M. (2016). Investigating the Role of Faults in the Establishment and Survival of Settlements using Remote Sensing and Geographic Information System (GIS). The Case of Sahneh County in Iran. Journal of Settlements and Spatial Planning, 7(2), 201-206.
30. Saffarzadeh, M., Rezaei, H., & Majidi, M. Z. (2022). a Pricing Model for Freeway Tolls Based on the Share of Mode Shift, Route Shift, Travel Time Change and Users’ Willingness to Pay (Case study: Tehran_Saveh Freeway). Journal of Transportation Research, 19(3), 359-370.
31. Sagan, C., Toon, O. B., & Pollack, J. B. (1979). Anthropogenic albedo changes and the earth’s climate. Science, 206(4425), 1363-1368.
32. Sahani, N., Goswami, S. K., & Saha, A. (2021). The impact of COVID-19 induced lockdown on the changes of air quality and land surface temperature in Kolkata city, India. Spatial Information Research, 29, 519-534.
33. Tologbonse, E. B., Jibrin, M. M., Auta, S. J., & Damisa, M. A. (2013). Factors influencing women participation in women in agriculture (WIA) programme of Kaduna state agricultural development project, Nigeria. International Journal of Agricultural Economics and Extension, 1(7), 47-54.
34. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132.
35. United Nations, 2010. World urbanization prospects: The 2009 revision population database. http://esa.un.org/unpd/wup/index.htm.
36. Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57(3), 167-184.
37. Wan, Z., Zhang, Y., Zhang, Q., & Li, Z. L. (2004). Quality assessment and validation of the MODIS global land surface temperature. International journal of remote sensing, 25(1), 261-274.
38. Yang, B., Yang, X., Leung, L. R., Zhong, S., Qian, Y., Zhao, C., … & Qi, J. (2019). Modeling the impacts of urbanization on summer thermal comfort: the role of urban land use and anthropogenic heat. Journal of Geophysical Research: Atmospheres, 124(13), 6681-6697.
39. Yang, J., Ren, J., Sun, D., Xiao, X., Xia, J. C., Jin, C., & Li, X. (2021). Understanding land surface temperature impact factors based on local climate zones. Sustainable Cities and Society, 69, 102818.
40. Zare Naghadehi, S., Asadi, M., Maleki, M., Tavakkoli-Sabour, S. M., Van Genderen, J. L., & Saleh, S. S. (2021). Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data. ISPRS International Journal of Geo-Information, 10(8), 513.
41. Zinatizadeh, S., Azmi, A., Monavari, S. M., & Sobhanardakani, S. (2017). Evaluation and prediction of sustainability of urban areas: A case study for Kermanshah city, Iran. Cities, 66, 1-9.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Original Research

n

n

n

n

n

Journal of Geotechnical Engineering

n

[if 344 not_equal=””]ISSN: 2394-1987[/if 344]

n

n

n

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 11
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 01
Received April 1, 2024
Accepted April 10, 2024
Published April 13, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]