Experimental investigation of humidification-dehumidification desalination system

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : May 16, 2024 at 11:08 am | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Amit Kumar, Abhishek Tiwari

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Professor, Research Scholar Sardar Vallabhbhai National Institute of Technology, Surat, Sardar Vallabhbhai National Institute of Technology, Surat Gujarat, Gujarat India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nThe aim of present study is to investigate an H-DH desalination system experimentally. The system consists of a solar air heater, a humidifier, and a dehumidifier connected with an evaporative cooler. The proposed system is operated in a closed loop configuration, at two airflow rates. The performance metrics are assessed via the examination of energy and economic factors. The solar air heater has the ability to produce hot air with a mean temperature of 100°C, at 150 kg/h of airflow rate. This improved the humidification efficiency, leading to a freshwater production rate of around 22.8 kg/day at a cost of 0.027 $/kg. It is noticed that the system’s performance directly depends upon air flow rate. Furthermore, dehumidifier connected with an evaporative cooler efficiently resolves the problem of fouling that occurs during the condensation of humidified air. The system had an average energy efficacy of 25.39% when the air flow rate was set at 150 kg/h.

n

n

n

Keywords: Dehumidifier, energy, economic, humidifier, renewable energy.

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Amit Kumar, Abhishek Tiwari. Experimental investigation of humidification-dehumidification desalination system. Journal of Polymer and Composites. May 16, 2024; ():-.

n

How to cite this URL: Amit Kumar, Abhishek Tiwari. Experimental investigation of humidification-dehumidification desalination system. Journal of Polymer and Composites. May 16, 2024; ():-. Available from: https://journals.stmjournals.com/jopc/article=May 16, 2024/view=0

nn


nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]nnnn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Kumar A, Yadav A. Experimental investigation of a desiccant air conditioning system based on solar-powered composite desiccant bed heat exchanger. Int J Energy a Clean Environ. 2017;18(1):79–97.
  2. Kumar A, Yadav A. Experimental investigation of solar heating and humidification system based on desiccant bed heat exchanger. Int J Ambient Energy [Internet]. 2017;38(8):826–33. Available from: http://dx.doi.org/01430750.2016.1222954
  3. Tiwari A, Kumar A. Energy, exergy, economic, exergo and enviro-economic analysis of solar powered humidification dehumidification desalination system: An experimental investigation. Appl Therm Eng [Internet]. 2024;122992. Available from: https://doi.org/10.1016/j.applthermaleng.2024.122992
  4. Tiwari A, Kumar A. Solar air heater based on double-ends open evacuated tube with & without phase change material: An experimental investigation. J Energy Storage [Internet]. 2023;72(PA):108265. Available from: https://doi.org/10.1016/j.est.2023.108265
  5. Tiwari A, Rathod MK, Kumar A. A comprehensive review of solar-driven desalination systems and its advancements [Internet]. Vol. 25, Environment, Development and Sustainability. Springer Netherlands; 2023. 1052–1083 p. Available from: https://doi.org/10.1007/s10668-021-02040-5
  6. Tiwari A, Kumar A. Energy, exergy, environmental, and economic (4E’s) analysis of a solar driven humidification-dehumidification desalination system: An experimental investigation. Therm Sci Eng Prog [Internet]. 2024;47(December 2023):102354. Available from: https://doi.org/10.1016/j.tsep.2023.102354
  7. Tiwari A, Kumar A. A comprehensive review on solar thermal desalination systems based on humidification-dehumidification approach. Clean Technol Environ Policy [Internet]. 2023;(0123456789). Available from: https://doi.org/10.1007/s10098-023-02517-z
  8. Kumar A, Yadav A. Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute.” Environ Dev Sustain. 2017;19(4):1279–92.
  9. Kabeel AE, El-Said EMS. A hybrid solar desalination system of air humidification-dehumidification and water flashing evaporation. Part I. A numerical investigation. Desalination. 2013;320:56–72.
  10. Elminshawy NAS, Siddiqui FR, Addas MF. Experimental and analytical study on productivity augmentation of a novel solar humidification-dehumidification (HDH) system. Desalination. 2015;365:36–45.
  11. Farshchi Tabrizi F, Khosravi M, Shirzaei Sani I. Experimental study of a cascade solar still coupled with a humidification-dehumidification system. Energy Convers Manag [Internet]. 2016;115:80–8. Available from: http://dx.doi.org/10.1016/j.enconman.2016.02.006
  12. Eid EI, Khalaf-Allah RA, Dahab MA. An experimental study of solar desalination using free jets and an auxiliary hot air stream. Heat Mass Transf und Stoffuebertragung. 2018;54(4):1177–87.
  13. Mohamed ASA, Ahmed MS, Shahdy AG. Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique. Renew Energy. 2020;152:823–34.
  14. El-Said EMS, Dahab MA, Omara M, Abdelaziz GB. Solar desalination unit coupled with a novel humidifier. Renew Energy [Internet]. 2021;180:297–312. Available from: https://doi.org/10.1016/j.renene.2021.08.105
  15. Alrbai M, Enizat J, Hayajneh H, Qawasmeh B, Al-Dahidi S. Energy and exergy analysis of a novel humidification-dehumidification desalination system with fogging technique. Desalination [Internet]. 2022;522(October 2021):115421. Available from: https://doi.org/10.1016/j.desal.2021.115421
  16. Santosh R, Lee HS, Ji H, Kim YD. Effect of thermal characteristics on the chemical quality of real-brine treatment through hydrophilic fiber-based low-grade heat-powered humidification-dehumidification process. Water Res. 2023;233(February).
  17. Gautam A, Dave T, Krishnan S. Performance investigation of humidification dehumidification desalination with mass extraction and recirculation of rejected water. Therm Sci Eng Prog [Internet]. 2023;41(February):101813. Available from: https://doi.org/10.1016/j.tsep.2023.101813
  18. Naeini A, Jalali A, Houshfar E. Thermodynamic and thermoeconomic modeling of humidification-dehumidification desalination systems with bubble column dehumidifier. Desalination [Internet]. 2023;568:117005. Available from: https://doi.org/10.1016/j.desal.2023.117005
  19. Tashtoush B, Al-Omari J. Solar-assisted hybrid integration of humidification-dehumidification and forward osmosis for brackish water desalination: A parametric study. Case Stud Chem Environ Eng [Internet]. 2023;8:100500. Available from: https://doi.org/10.1016/j.cscee.2023.100500
  20. Tiwari A, Agrawal A, Kumar A. An experimental investigation of a desalination system based on an evacuated tube collector coupled with a heat exchanger. Heat Transf. 2022;51(8):8005–19.
  21. Deniz E, Çınar S. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Convers Manag [Internet]. 2016;126:12–9. Available from: http://dx.doi.org/10.1016/j.enconman.2016.07.064
  22. Tiwari A, Rathod MK, Kumar A. Experimental investigation of a desalination system based on evacuated tube collector. Environ Dev Sustain [Internet]. 2023;(0123456789). Available from: https://doi.org/10.1007/s10668-023-03070-x

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received March 21, 2024
Accepted April 6, 2024
Published May 16, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]