Service Life Prediction of Concretes Incorporated with Ground Granulated Blast Furnace Slag and Icrete with respect to Chloride Ion Penetration

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : April 22, 2024 at 3:06 pm | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Dharma Raj Upadhyaya, Dr. B. Kameswara Rao, P. Sree Pavan

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. PG Student, Professor, PG Student, Department of Civil Engineering, KLEF University, Department of Civil Engineering, KLEF University, Department of Civil Engineering, KLEF University, Andhra Pradesh, Andhra Pradesh, Andhra Pradesh, India, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nThe reduced service life of concrete structures in coastal or de-icing salt conditions is commonly attributed to corrosion generated by chloride. Therefore, extensive research is being conducted to estimate the time taken for threshold chloride ions to reach the reinforcement and break the protective layer, initiating the corrosive process. This study conducted an experimental investigation on controlled concrete, concrete incorporating 50% GGBS, and concrete incorporating both 50% GGBS and 2% Icrete as the replacement of cementitious materials, with three different water-cement ratios (0.3, 0.4, and 0.5). The comparison was made based on their compressive strength, chloride ion concentration at different depths, chloride diffusion coefficient, and their service life. The results indicate that the concrete incorporating both GGBS and Icrete performed better than that of the controlled concrete and concrete incorporating GGBS only, in terms of higher compressive strength, reduced chloride ion penetration, reduced chloride ion diffusion coefficient, and higher service life

n

n

n

Keywords: Service life prediction, GGBS, Icrete, chloride ion concentration, diffusion coefficient

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Dharma Raj Upadhyaya, Dr. B. Kameswara Rao, P. Sree Pavan , Service Life Prediction of Concretes Incorporated with Ground Granulated Blast Furnace Slag and Icrete with respect to Chloride Ion Penetration jopc April 22, 2024; :-

n

How to cite this URL: Dharma Raj Upadhyaya, Dr. B. Kameswara Rao, P. Sree Pavan , Service Life Prediction of Concretes Incorporated with Ground Granulated Blast Furnace Slag and Icrete with respect to Chloride Ion Penetration jopc April 22, 2024 {cited April 22, 2024};:-. Available from: https://journals.stmjournals.com/jopc/article=April 22, 2024/view=0

n


n[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] nn

n[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

[1]       J. R. Clifton and D. J. Naus, “Service- Life Prediction Reported by ACI Committee 365. ACI 365.1R-00,” p. 44, 2000.

[2]        E. Services and G. S. Canada, “Service life prediction of concrete structures by reliability analysis,” vol. 10, no. 1, pp. 45–55, 1996.

[3]        M. Alexander and H. Beushausen, “Durability, service life prediction, and modelling for reinforced concrete structures – review and critique,” Cem. Concr. Res., vol. 122, no. April, pp. 17–29, 2019, doi: 10.1016/j.cemconres.2019.04.018.

[4]        A. Poursaee, Corrosion of Steel in Concrete Structures, vol. 61, no. 1. 2016. [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

[5]        B. Martín-Pérez, H. Zibara, R. D. Hooton, and M. D. A. Thomas, “Study of the effect of chloride binding on service life predictions,” Cem. Concr. Res., vol. 30, no. 8, pp. 1215–1223, 2000, doi: 10.1016/S0008-8846(00)00339-2.

[6]        Z. Zhang, Q. Niu, X. Liu, Y. Zhang, T. Zhao, and M. Liu, “Durability Life Prediction of Reinforced Concrete Structure Corroded by Chloride Based on the Gamma Process,” ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., vol. 7, no. 4, pp. 1–10, 2021, doi: 10.1061/ajrua6.0001181.

[7]        A. Firouzi, M. Abdolhosseini, and R. Ayazian, “Service life prediction of corrosion-affected reinforced concrete columns based on time-dependent reliability analysis,” Eng. Fail. Anal., vol. 117, p. 104944, 2020, doi: 10.1016/j.engfailanal.2020.104944.

[8]        N. F. Ortega and S. I. Robles, “Assessment of Residual Life of concrete structures affected by reinforcement corrosion,” HBRC J., vol. 12, no. 2, pp. 114–122, 2016, doi: 10.1016/j.hbrcj.2014.11.003.

[9]        G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer, “International measures of prevention, application, and economics of corrosion technologies study,” NACE Int. Impact, no. February, pp. 1–216, 2016.

[10]      M. T. Liang, K. L. Wang, and C. H. Liang, “Service life prediction of reinforced concrete structures,” Cem. Concr. Res., vol. 29, no. 9, pp. 1411–1418, 1999, doi: 10.1016/S0008-8846(99)00109-X.

[11]      M. Otieno, H. Beushausen, and M. Alexander, “Effect of chemical composition of slag on chloride penetration resistance of concrete,” Cem. Concr. Compos., vol. 46, pp. 56–64, 2014, doi: 10.1016/j.cemconcomp.2013.11.003.

[12]      IS:269, “Indian Standard Ordinary Portland Cement – Specification,” Bureau of Indian Standards, New Delhi, India. pp. 1–9, 2015.

[13]      IS 16714, “Indian Standard Ground Granulated Blast Furnace Slag for Use in Cement, Mortar and Concrete- Code of Practice.” 2018.

[14]      IS:14959 (Part 2), “Indian Standard DETERMINATION OF WATER SOLUBLE AND ACID SOLUBLE CHLORIDES IN MORTAR AND CONCRETE — METHOD OF TEST.” pp. 1–13, 2001.

[15]      K. Li, Durability Design of Concrete Structures. 2016. doi: 10.1002/9781118910108.

[16]      A. Costa and J. Appleton, “Chloride penetration into concrete in marine environment – Part I: Main parameters affecting chloride penetration,” Mater. Struct. Constr., vol. 32, no. 4, pp. 252–259, 1999, doi: 10.1007/bf02479594.

[17]      J. J. O. Andrade, E. Possan, and D. C. C. Dal Molin, “Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments,” J. Build. Pathol. Rehabil., vol. 2, no. 1, pp. 1–8, 2017, doi: 10.1007/s41024-017-0025-x.

[18]      Fédération internationale du béton., Model code for service life design : model code. 2006.

[19]      Z. Li et al., “Service life prediction of reinforced concrete in a sea-crossing railway bridge in Jiaozhou Bay: A case study,” Appl. Sci., vol. 9, no. 17, 2019, doi: 10.3390/app9173570.

[20]      P. S. Mangat and M. C. Limbachiya, “Effect of initial curing on chloride diffusion in concrete repair materials,” Cem. Concr. Res., vol. 29, no. 9, pp. 1475–1485, 1999, doi: 10.1016/S0008-8846(99)00130-1.

[21]      P. S. Mangat and B. T. Molloy, “Prediction of long term chloride concentration in concrete,” Mater. Struct., vol. 27, no. 6, pp. 338–346, 1994, doi: 10.1007/BF02473426.

[22]      M. D. A. Thomas and P. B. Bamforth, “Modelling chloride diffusion in concrete effect of fly ash and slag,” Cem. Concr. Res., vol. 29, no. 4, pp. 487–495, 1999, doi: 10.1016/S0008-8846(98)00192-6.

[23]      Y.-M. Sun, T.-P. Chang, and M.-T. Liang, “Service Life Prediction for Concrete Structures by Time-Depth Dependent Chloride Diffusion Coefficient,” J. Mater. Civ. Eng., vol. 22, no. 11, pp. 1187–1190, 2010, doi: 10.1061/(asce)mt.1943-5533.0000098.

[24]      P. Lehner, L. Koubová, and M. Rosmanit, “Study of Effect of Reference Time of Chloride Diffusion Coefficient in Numerical Modelling of Durability of Concrete,” Buildings, vol. 12, no. 9, 2022, doi: 10.3390/buildings12091443.

[25]      A. Oner and S. Akyuz, “An experimental study on optimum usage of GGBS for the compressive strength of concrete,” Cem. Concr. Compos., vol. 29, no. 6, pp. 505–514, 2007, doi: 10.1016/j.cemconcomp.2007.01.001.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 2146 equals=”Yes”]

[/if 2146][if 2146 not_equal=”Yes”]

[/if 2146]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received February 9, 2024
Accepted March 13, 2024
Published April 22, 2024

n

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]