Analysis of Thermo-Mechanical Properties in Cement Mortar Using Synthesized Silicate Microencapsulation of Phase Change Materials by Sol-Gel Process

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : April 18, 2024 at 10:46 am | [if 1553 equals=””] Volume : [else] Volume :[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Prakash Somani, Arun Gaur

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Professor, Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, Rajasthan, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nThis investigation delves into improving building thermal comfort using microencapsulated phase change materials (PCM@SiO2) in cement mortar. The encapsulation process, achieved via a sol-gel method, envelops PCM in a silicate shell Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FTIR) were used to confirm the thermal properties and integrity of encapsulated PCM, which showed an encapsulation efficiency of 92.7% and a thermal storage capacity of 99.7%. The study involved the integration of PCM@SiO2 into cement mortar using a binder-to-sand ratio of 1:3. The PCM@SiO2 was varied in concentrations ranging from 0% to 20%, with increments of 5%. The mechanical strength and thermal conductivity of these PCM@SiO2 cement mortar mixes were meticulously evaluated. Findings revealed that while the addition of PCM@SiO2 marginally compromised the mortar’s mechanical strength, it substantially boosted thermal performance. This enhancement underscores PCM@SiO2’s utility as a multifunctional building material, harmonizing structural resilience with augmented thermal energy storage capabilities, showcasing its potential to significantly elevate the energy efficiency and comfort of modern buildings

n

n

n

Keywords: Synthesis PCM, Mechanical strength, Thermal comfort, Building material, Energy efficient

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Prakash Somani, Arun Gaur , Analysis of Thermo-Mechanical Properties in Cement Mortar Using Synthesized Silicate Microencapsulation of Phase Change Materials by Sol-Gel Process jopc April 18, 2024; :-

n

How to cite this URL: Prakash Somani, Arun Gaur , Analysis of Thermo-Mechanical Properties in Cement Mortar Using Synthesized Silicate Microencapsulation of Phase Change Materials by Sol-Gel Process jopc April 18, 2024 {cited April 18, 2024};:-. Available from: https://journals.stmjournals.com/jopc/article=April 18, 2024/view=0

n


n[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] nn

n[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Manoj Kumar P, Mylsamy K, Saravanakumar PT. Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020 Oct 1;42(19):2420-33.
  2. Subramanian A, Appukuttan S. Sol-gel synthesis and characterization of microencapsulated strontium titanate-myristic acid phase change material for thermal energy storage. Journal of Sol-Gel Science and Technology. 2020 Jun;94:573-81.
  3. Somani P, Gaur A. Temperature sensitivity analysis on mechanical properties of phase changing material incorporated rigid pavement. Materials Today: Proceedings. 2023 Jan 1;93:387-93.
  4. Somani P, Gaur A. Evaluation and reduction of temperature stresses in concrete pavement by using phase changing material. Materials Today: Proceedings. 2020 April 32:856-64.
  5. Xu T, Chen Q, Zhang Z, Gao X, Huang G. Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Building and Environment. 2016 Aug 1;104:172-7.
  6. Tang B, Qiu M, Zhang S. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Solar energy materials and solar cells. 2012 Oct 1;105:242-8.
  7. An J, Yang EH, Duan F, Xiang Y, Yang J. Synthesis and characterization of robust SiO2-phase change materials (PCM) microcapsules. ES Materials & Manufacturing. 2021 May 23;15:34-45.
  8. Cui H, Liao W, Mi X, Lo TY, Chen D. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials. Energy and Buildings. 2015 Oct 15;105:273-84.
  9. Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied thermal engineering. 2006 Oct 1;26(14-15):1652-61.
  10. Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Applied thermal engineering. 2005 Aug 1;25(11-12):1623-33.
  11. Xuan Y, Huang Y, Li Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension. Chemical Physics Letters. 2009 Sep 17;479(4-6):264-9.
  12. Yin D, Ma L, Liu J, Zhang Q. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell. Energy. 2014 Jan 1;64:575-81.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””][else]Ahead of Print[/if 424] Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 2146 equals=”Yes”]

[/if 2146][if 2146 not_equal=”Yes”]

[/if 2146]n

n

n

Volume
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424]
Received February 8, 2024
Accepted March 14, 2024
Published April 18, 2024

n

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]