Versatile CNC Machine for Tabletop Use Enhanced with Machine Learning Integration

[{“box”:0,”content”:”[if 992 equals=”Open Access”]

n

Open Access

n

[/if 992]n

n

Year : March 15, 2024 | Volume : 11 | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”]Special Issue[/if 424] : 08 | Page : 353-361

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Ashwini Kumar Baluguri, Srinivasa Rao Seeram

  1. [/foreach]

    n

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Professor, Department of Mechanical Engineering, KLEF University, Department of Mechanical Engineering, KLEF University, Andhra Pradesh, Andhra Pradesh, India, India
  2. n[/if 1175][/foreach]

[/if 2099][if 2099 equals=”Yes”][/if 2099]nn

n

Abstract

nIn the realm of tabletop multipurpose CNC machines, the integration of machine learning represents a groundbreaking advancement potentially revolutionary in the field of desktop manufacturing. This research explores the seamless incorporation of machine learning algorithms into tabletop CNC machines to enhance their capabilities, performance, and user experience. Through case studies and examples, we demonstrate the profound impact of machine learning integration in key areas of CNC machining, such as accurate tool wear prediction, real-time error detection and compensation, and precise quality control and inspection. The findings highlight the transformative power of machine learning in expanding the horizons of tabletop CNC machines, empowering users with unprecedented precision, efficiency, and versatility. By unraveling the challenges and opportunities associated with machine learning integration, this research paves the way for future developments that will propel tabletop multipurpose CNC machines into an era of intelligent, autonomous, and user-centric manufacturing systems. In addition, real-time feedback and monitoring during the machining process are made possible by the machine learning integration. The system can detect anomalies, such as tool deflection or material inconsistencies, and autonomously make corrective adjustments, ensuring a higher quality output. Additionally, the model continually learns from each machining operation, contributing to an evolving database of best practices for different materials and machining scenarios.

n

n

n

Keywords: Machine learning, user-centric manufacturing, CNC machining, tabletop, algorithms, error detection.

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Special Issue Conference International Conference on Innovative Concepts in Mechanical Engineering (ICICME – 2023) [/if 424]

n

n

n

How to cite this article: Ashwini Kumar Baluguri, Srinivasa Rao Seeram Versatile CNC Machine for Tabletop Use Enhanced with Machine Learning Integration jopc March 15, 2024; 11:353-361

n

How to cite this URL: Ashwini Kumar Baluguri, Srinivasa Rao Seeram Versatile CNC Machine for Tabletop Use Enhanced with Machine Learning Integration jopc March 15, 2024 {cited March 15, 2024};11:353-361. Available from: https://journals.stmjournals.com/jopc/article=March 15, 2024/view=0

nn


nn[if 992 equals=”Open Access”] Full Text PDF Download[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jopc’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Li, X., Wang, L., & Zhang, Y. (2020). Machine learning in CNC machining: Recent advances and future perspectives. International Journal of Machine Tools and Manufacture, 156, 103562.
  2. Brown, A., & Johnson, R. (2019). Machine learning applications in manufacturing: A review. Journal of Industrial Engineering and Management, 12(2), 227–249.
  3. Singh, A., & Verma, S. (2017). Machine learning for predictive modeling of tool wear in CNC machining. International Journal of Advanced Manufacturing Technology, 89(9-12), 3139–3151.
  4. Chen, J., Yang, H., & Liu, Y. (2021). A survey of machine learning techniques in CNC machining. Journal of Manufacturing Systems, 61, 43–56.
  5. Wang, Y., Zhang, L., & Li, H. (2020). Deep learning-based quality control and inspection in CNC machining. International Journal of Advanced Manufacturing Technology, 108(7-8), 2761v2777.
  6. Wu, X., Wang, L., Chen, Z., Sun, L., & Du, Q. (2018). Machine Learning-Based Approaches for CNC Machining: A Review. International Journal of Advanced Manufacturing Technology, 98(1-4), 1039–1052.
  7. Sastry, P. S. (2013). Unsupervised Learning Algorithms: An Overview. International Journal of Computer Science and Information Technologies, 4(3), 431–435.
  8. Gao, X., Li, W., Zhao, S., Xu, L., & Li, W. (2021). Intelligent optimization of CNC machining parameters based on reinforcement learning. Journal of Intelligent Manufacturing, 32(2),
    397–410.
  9. Anuar, S. N., Ibrahim, M. H. I., Bahari, A. R., & Rasid, M. F. A. (2020). Integration of machine learning techniques into CNC machining for surface roughness prediction: A review. International Journal of Advanced Manufacturing Technology, 104(1-4), 133–149.
  10. Padhi, S. N., Rout, T., Raghu Ram, K. S., & International Journal of Recent Technology and Engineering (IJRTE). (2019, May). Parametric Instability and Property Variation Analysis of a Rotating Cantilever FGO Beam. International Journal of Recent Technology and Engineering, 8(1). ISSN: 2277-3878.
  11. Jagadale, V. S., Padhi, S. N., & International Journal of Innovative Technology and Exploring Engineering (IJITEE). (2019, November). Mechanical Behavior of Coir Fiber Reinforced Polymer Resin Composites with Saturated Ash Particles. International Journal of Innovative Technology and Exploring Engineering, 9(1). ISSN: 2278-3075.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Conference Open Access Review Article

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 11
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”]Special Issue[/if 424] 08
Received November 27, 2023
Accepted January 5, 2024
Published March 15, 2024

n

n

n

n

n

nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]