Minimum Energy Criteria for Machining to Determine Energy-Productivity Relationship

[{“box”:0,”content”:”

n

Year : September 10, 2023 | Volume : 11 | Issue : 04 | Page : 81-94

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Kamal Sharma

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. , , ,
  2. n[/if 1175][/foreach]

n

n

Abstract

nIn this research segment, cutting rates were changed while depth of cut and feed rate remained fixed. The results of cutting using a standard uncoated carbide insert were compared. Cutting speeds were maintained at a constant. After determining the optimal cutting condition for the equipment and material. To determine optimal tool life and cutting speed, turning operations were performed. In industrial cutting operations, flank wear reduces tool life. For single-point, rotating tools, 0.3 mm of flank wear is the cutoff for acceptable service life. Insert flank wear after 16 minutes of use at a velocity of 300 mm per min. It is possible to calculate the tool life exponent by first establishing a
mathematical relation between the cutting speed and the logarithm of the tool life (log T). According to the pie chart’s non-cutting area, the majority of the energy used during machining is not used for actual cutting. The machining process alone accounted for 35% of the total power used when operating Approximately 39%, 40%, and 41%, at a cutting speed of 300 mm/min. According to studies, consumes almost 98% of the total electricity used in the milling process. Only two percent of the power is consumed by the cutting process itself, depending on the load, machining used between 0% and 48.1% of the total energy. 63% reduction in energy consumption when comparing the actual cutting parameter used in a single run with the cutting parameter. This exemplifies how much energy could be conserved throughout the machining process if the minimal energy criterion were used.

n

n

n

Keywords: Uncoated and coated insert; Turning operations; Flank wear; machining; milling process; energy consumption; cutting parameter

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Polymer and Composites(jopc)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Kamal Sharma Minimum Energy Criteria for Machining to Determine Energy-Productivity Relationship jopc September 10, 2023; 11:81-94

n

How to cite this URL: Kamal Sharma Minimum Energy Criteria for Machining to Determine Energy-Productivity Relationship jopc September 10, 2023 {cited September 10, 2023};11:81-94. Available from: https://journals.stmjournals.com/jopc/article=September 10, 2023/view=0/

nn


nn

Full Text

n[if 992 equals=”Open Access”] https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/34fe6118-s81-s94-minimum-energy-criteria-for-machining-to-determine-energy-productivity.pdf[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/34fe6118-s81-s94-minimum-energy-criteria-for-machining-to-determine-energy-productivity.pdf’);n }nelse if (fieldValue == ‘administrator’) { document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/34fe6118-s81-s94-minimum-energy-criteria-for-machining-to-determine-energy-productivity.pdf’); }nelse if (fieldValue == ‘jopc’) { document.write(‘https://storage.googleapis.com/journals-stmjournals-com-wp-media-to-gcp-offload/2023/09/34fe6118-s81-s94-minimum-energy-criteria-for-machining-to-determine-energy-productivity.pdf’); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

1. Camposeco-Negrete C. Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. Journal of cleaner production. 2015 Mar 15;91:109–17.
2. Rajemi MF, Mativenga PT. Machinability analysis from energy footprint considerations. Journal of Machine Engineering. 2008;8.
3. Uhlmann E, Koenig J. Key technologies for sustainable manufacturing. Journal of Machine Engineering. 2008;8. 4. Kumar R, Bilga PS, Singh S. Optimization of Turning Parameters Using Taguchi Method for Reducing Active Cutting Energy. InProceedings of the 7th International Conference on Advancements in Engineering & Technology (ICAET-2019), Sangrur, India 2019 Mar (pp. 15–16). 5. Zhong Q, Tang R, Peng T. Decision rules for energy consumption minimization during material removal process in turning. Journal of Cleaner Production. 2017 Jan 1;140:1819–27.
6. Dambhare S, Deshmukh S, Borade A, Digalwar A, Phate M. Sustainability issues in turning process: A study in Indian machining Industry. Procedia CIRP. 2015 Jan 1;26:379–84.
7. Uhlmann E, Koenig J. Key technologies for sustainable manufacturing. Journal of Machine Engineering. 2008;8.
8. Singh BK, Roy H, Mondal B, Roy SS, Mandal N. Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement. 2019 Aug 1;142:181–94. 9. Park HS, Nguyen TT, Dang XP. Multi-objective optimization of turning process of hardened material for energy efficiency. International Journal of Precision Engineering and Manufacturing. 2016 Dec;17(12):1623–31.
10. Awale A, Inamdar K. Multi-objective optimization of high-speed turning parameters for hardened AISI S7 tool steel using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020 Jul;42(7):1–7.
11. Gutowski T, Dahmus J, Thiriez A. Electrical energy requirements for manufacturing processes. In 13th CIRP international conference on life cycle engineering 2006 May 31 (Vol. 31, No. 1, pp. 623–638). Leuven, Belgium.
12. Ogundimu O, Lawal SA, Okokpujie IP. Experimental study and analysis of variance of material removal rate in high speed turning of AISI 304L alloy steel. InIOP conference series: materials science and engineering 2018 Sep 1 (Vol. 413, No. 1, p. 012030). IOP Publishing.
13. Chaturvedi R, Sharma A, Sharma K, Saraswat M. Tribological behaviour of multi-walled carbon nanotubes reinforced AA 7075 nano-composites. Advances in Materials and Processing Technologies. 2022 May 29:1–3.
14. Rajemi MF, Mativenga PT, Aramcharoen A. Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production. 2010 Jul 1;18(10–11):1059–65.
15. Jain H, Tripathi J, Bharilya R, Jain S, Kumar A. Optimisation and evaluation of machining parameters for turning operation of Inconel-625. Materials Today: Proceedings. 2015 Jan 1;2(4–5):2306–13.
16. Mori M, Fujishima M, Inamasu Y, Oda Y. A study on energy efficiency improvement for machine tools. CIRP annals. 2011 Jan 1;60(1):145–8.
17. Newman ST, Nassehi A, Imani-Asrai R, Dhokia V. Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology. 2012 Jan 1;5(2):127–36.

18. Sharma A, Chaturvedi R, Sharma K, Saraswat M. Force evaluation and machining parameter optimization in milling of aluminium burr composite based on response surface method. Advances in Materials and Processing Technologies. 2022 Feb 20:1–22.
19. Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. Journal of cleaner production. 2014 Oct 1;80:139–49. 20. Camposeco-Negrete C. Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. Journal of cleaner production. 2015 Mar 15;91:109–17.
21. Wang Q, Liu F, Wang X. Multi-objective optimization of machining parameters considering energy consumption. The International Journal of Advanced Manufacturing Technology. 2014 Mar;71(5):1133–42.
22. Sun J, Yan G, Abed AM, Sharma A, Gangadevi R, Eldin SM, Taghavi M. Evaluation and optimization of a new energy cycle based on geothermal wells, liquefied natural gas and solar thermal energy. Process Safety and Environmental Protection. 2022 Dec 1;168:544–57.
23. Singh PK, Sharma K. Mechanical and viscoelastic properties of in-situ amine functionalized multiple layer grpahene/epoxy nanocomposites. Current Nanoscience. 2018 Jun 1;14(3):252–62.
24. Buratti E. Simulations of Ti6Al4V milling for assessing different cooling lubrication strategies.
25. Ogundimu O, Lawal SA, Okokpujie IP. Experimental study and analysis of variance of material removal rate in high speed turning of AISI 304L alloy steel. InIOP conference series: materials science and engineering 2018 Sep 1 (Vol. 413, No. 1, p. 012030). IOP Publishing.
26. Makadia AJ, Nanavati JI. Optimisation of machining parameters for turning operations based on response surface methodology. Measurement. 2013 May 1;46(4):1521–9.
27. Xiao Y, Jiang Z, Gu Q, Yan W, Wang R. A novel approach to CNC machining center processing parameters optimization considering energy-saving and low-cost. Journal of Manufacturing Systems. 2021 Apr 1;59:535–48.
28. Mativenga PT, Rajemi MF. Calculation of optimum cutting parameters based on minimum energy footprint. CIRP annals. 2011 Jan 1;60(1):149–52.
29. Mori M, Fujishima M, Inamasu Y, Oda Y. A study on energy efficiency improvement for machine tools. CIRP annals. 2011 Jan 1;60(1):145–8.
30. Newman ST, Nassehi A, Imani-Asrai R, Dhokia V. Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology. 2012 Jan 1;5(2):127–36.
31. Mawson VJ, Hughes BR. The development of modelling tools to improve energy efficiency in manufacturing processes and systems. Journal of Manufacturing Systems. 2019 Apr 1;51:95–105.
32. Wang S, Lin H, Abed AM, Sharma A, Fooladi H. Exergoeconomic assessment of a biomass-based hydrogen, electricity and freshwater production cycle combined with an electrolyzer, steam turbine and a thermal desalination process. International Journal of Hydrogen Energy. 2022 Sep 15;47(79):33699–718.
33. Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. Journal of cleaner production. 2014 Oct 1;80:139–49.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Special Issue Open Access Original Research

n

n

n

n

n

Journal of Polymer and Composites

n

[if 344 not_equal=””]ISSN: 2321–2810[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 11
Issue 04
Received December 12, 2022
Accepted September 1, 2023
Published September 10, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]