Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories

Year : 2024 | Volume : 13 | Issue : 01 | Page : 22 34
    By

    Punit Kumar,

  1. Assistant Professor, Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, India

Abstract

Plasma is regarded as quantum if its macroscopic properties are significantly affected by the quantum
nature of its constituent particles. A proper description is necessary to comprehend the importance of
collective quantum plasma effects. In this entry, the field of quantum plasmas, a generic exotic state of
highly ionized matter where quantum effects are relevant, is discussed, for example, by dense plasmas
arising from strong laser irradiation of solid targets in compact astrophysical objects such as white
dwarfs or neutron stars, solid-state plasmas, and ultrasmall electronic devices. In addition, many
condensed matter systems, including the electron gas in metals, metallic nanoparticles, and electron-hole systems in semiconductors and heterostructures, exhibit quantum plasma behavior. The early developments in this subject have been described. The most commonly used microscopic approaches to
describe quantum plasma are discussed along with their related assumptions and restrictions. In
particular, the quantum hydrodynamic (QHD) model for finite-temperature plasmas has been
consistently described, and the range of applicability of the QHD is discussed.

Keywords: Quantum plasma, QHD model, Kinetic models, Nanoplasmas, Nanoparticles

[This article belongs to Research & Reviews : Journal of Physics ]

How to cite this article:
Punit Kumar. Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories. Research & Reviews : Journal of Physics. 2024; 13(01):22-34.
How to cite this URL:
Punit Kumar. Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories. Research & Reviews : Journal of Physics. 2024; 13(01):22-34. Available from: https://journals.stmjournals.com/rrjophy/article=2024/view=170431


References

1. Graziani F, Desjarlais MP, Redmer R, Trickey SB, editors. Frontiers and challenges in warm dense matter. Springer Science & Business; 2014 Apr 28.
2. Fortov VE. Extreme states of matter: high energy density physics. Springer; 2015 Dec 26.
3. Moldabekov ZA, Groth S, Dornheim T, Kählert H, Bonitz M, Ramazanov TS. Structural characteristics of strongly coupled ions in a dense quantum plasma. Physical Review E. 2018 Aug;98(2):023207.
4. Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions. Physics Reports. 2018 May 30;744:1-86.
5. Hausoel A, arolak M, Şaşιoğlu E, ichtenstein A, Held , atanin A, oschi A, angiovanni .local magnetic moments in iron and nickel at ambient and Earth’s core conditions. Nature communications. 2017 Jul 12;8(1):1-9.
6. chlanges M, Bonitz M, schttschjan A. Plasma Phase ransition in Fluid Hydrogen‐Helium Mixtures. Contributions to Plasma Physics. 1995;35(2):109-25.
7. Vorberger J, Tamblyn I, Militzer B, Bonev SA. Hydrogen-helium mixtures in the interiors of giant planets. Physical Review B—Condensed Matter and Materials Physics. 2007 Jan 1;75(2):024206.
8. Nettelmann N, Püstow R, Redmer R. Saturn layered structure and homogeneous evolution models with different EOSs. Icarus. 2013 Jul 1;225(1):548-57.
9. Saumon D, Hubbard WB, Chabrier G, Van Horn HM. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 391, no. 2, June 1, 1992, p. 827-831. 1992 Jun;391:827-31

10. Chabrier G. Quantum effects in dense Coulumbic matter-Application to the cooling of white dwarfs. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 414, no. 2, p. 695-700. 1993 Sep;414:695-700.
11. Chabrier G, Brassard P, Fontaine G, Saumon D. Cooling sequences and color-magnitude diagrams for cool white dwarfs with hydrogen atmospheres. The Astrophysical Journal. 2000 Nov 1;543(1):216.
12. Haensel P, Potekhin AY, Yakovlev DG. Neutron Stars 1: Equation of State and Structure. NY: Springer; 2006.
13. Daligault J, Gupta S. Electron–ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star. The Astrophysical Journal. 2009 Sep 3;703(1):994.
14. Craighead HG. Nanoelectromechanical systems. Science. 2000 Nov 24;290(5496):1532-5.
15. Manfredi G, Hervieux PA. Autoresonant control of the many-electron dynamics in nonparabolic quantum wells. Appl Phys Lett. 2007;91. DOI: 10.1063/1.2761246.
16. Ang LK, Zhang P. Ultrashort-pulse Child-Langmuir law in the quantum and relativistic regimes. Physical review letters. 2007 Apr 20;98(16):164802.
17. Ghosh S, Dubey S, Vanshpal R. Quantum effect on parametric amplification characteristics in piezoelectric semiconductors. Physics Letters A. 2010 Nov 15;375(1):43-7.
18. Berggren F, Ji Z . uantum chaos in nano‐sized billiards in layered t o‐dimensional semiconductor structures. Chaos: an interdisciplinary journal of nonlinear science. 1996 Dec 1;6(4):543-53.
19. Crouseilles N, Hervieux PA, Manfredi G. Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Physical Review B—Condensed Matter and Materials Physics. 2008 Oct 15;78(15):155412.
20. Shpatakovskaya GV. Semiclassical model of a one-dimensional quantum dot. Journal of Experimental and Theoretical Physics. 2006 Mar;102:466-74

21. Haas F, Manfredi G, Shukla PK, Hervieux PA. Breather mode in the many-electron dynamics of semiconductor quantum wells. Physical Review B—Condensed Matter and Materials Physics. 2009 Aug 15;80(7):073301.
22. Robinson MP, Tolra BL, Noel MW, Gallagher TF, Pillet P. Spontaneous evolution of Rydberg atoms into an ultracold plasma. Physical review letters. 2000 Nov 20;85(21):4466.
23. Glenzer SH, Landen OL, Neumayer P, Lee RW, Widmann K, Pollaine SW, Wallace RJ, Gregori G, Höll A, Bornath T, Thiele R. Observations of plasmons in warm dense matter. Physical review letters. 2007 Feb 9;98(6):065002.
24. Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Reviews of modern physics. 2006 Apr;78(2):309-71.
25. Marklund M, Brodin G, Stenflo L, Liu CS. New quantum limits in plasmonic devices. Europhysicsletters. 2008 Sep 22;84(1):17006.
26. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. nature. 2003 Aug;424(6950):824-30.
27. Killian TC. Cool vibes. Nature. 2006 May 18;441(7091):297-8.
28. Chabrier G, Douchin F, Potekhin AY. Dense astrophysical plasmas. Journal of Physics: Condensed Matter. 2002 Sep 27;14(40):9133.
29. Becker K. KH. and Schoenbach, J. Eden, Microplasmas and applications. J. Phys. D Appl. Phys. 2006;39(3).
30. Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R. The National Ignition Facility: Ushering in a new age for high energy density science. Physics of Plasmas. 2009 Apr 1;16(4).
31. Hurricane OA, Callahan DA, Casey DT, Dewald EL, Dittrich TR, Döppner T, Haan S, Hinkel DE, Berzak Hopkins LF, Jones O, Kritcher AL. Inertially confined fusion plasmas dominated by alphaparticle self-heating. Nature Physics. 2016 Aug;12(8):800-6.
32. Matzen MK, Sweeney MA, Adams RG, Asay JR, Bailey JE, Bennett GR, Bliss DE, Bloomquist DD, Brunner TA, Campbell RE, Chandler GA. Pulsed-power-driven high energy density physics and inertial confinement fusion research. Physics of Plasmas. 2005 May 1;12(5).

33. Shuryak E. Physics of strongly coupled quark–gluon plasma. Progress in Particle and Nuclear Physics. 2009 Jan 1;62(1):48-101.
34. Filinov VS, Ivanov YB, Fortov VE, Bonitz M, Levashov PR. Color path-integral Monte-Car


Regular Issue Review Article
Volume 13
Issue 01
Received 04/04/2024
Accepted 26/07/2024
Published 03/08/2024
Publication Time 121 Days


Login


My IP

PlumX Metrics