Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories

Year : 2024 | Volume :13 | Issue : 01 | Page : 22-34
By

Punit Kumar,

  1. Assistant Professor Department of Physics, University of Lucknow, Lucknow Uttar Pradesh India

Abstract

Plasma is regarded as quantum if its macroscopic properties are significantly affected by the quantum
nature of its constituent particles. A proper description is necessary to comprehend the importance of
collective quantum plasma effects. In this entry, the field of quantum plasmas, a generic exotic state of
highly ionized matter where quantum effects are relevant, is discussed, for example, by dense plasmas
arising from strong laser irradiation of solid targets in compact astrophysical objects such as white
dwarfs or neutron stars, solid-state plasmas, and ultrasmall electronic devices. In addition, many
condensed matter systems, including the electron gas in metals, metallic nanoparticles, and electron-hole systems in semiconductors and heterostructures, exhibit quantum plasma behavior. The early developments in this subject have been described. The most commonly used microscopic approaches to
describe quantum plasma are discussed along with their related assumptions and restrictions. In
particular, the quantum hydrodynamic (QHD) model for finite-temperature plasmas has been
consistently described, and the range of applicability of the QHD is discussed.

Keywords: Quantum plasma, QHD model, Kinetic models, Nanoplasmas, Nanoparticles

[This article belongs to Research & Reviews : Journal of Physics(rrjophy)]

How to cite this article: Punit Kumar. Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories. Research & Reviews : Journal of Physics. 2024; 13(01):22-34.
How to cite this URL: Punit Kumar. Investigating the Dynamics of Quantum Plasmas: Current Advancements and Prospective Trajectories. Research & Reviews : Journal of Physics. 2024; 13(01):22-34. Available from: https://journals.stmjournals.com/rrjophy/article=2024/view=170431



References

1. Graziani F, Desjarlais MP, Redmer R, Trickey SB, editors. Frontiers and challenges in warm dense matter. Springer Science & Business; 2014 Apr 28.
2. Fortov VE. Extreme states of matter: high energy density physics. Springer; 2015 Dec 26.
3. Moldabekov ZA, Groth S, Dornheim T, Kählert H, Bonitz M, Ramazanov TS. Structural characteristics of strongly coupled ions in a dense quantum plasma. Physical Review E. 2018 Aug;98(2):023207.
4. Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions. Physics Reports. 2018 May 30;744:1-86.
5. Hausoel A, arolak M, Şaşιoğlu E, ichtenstein A, Held , atanin A, oschi A, angiovanni .local magnetic moments in iron and nickel at ambient and Earth’s core conditions. Nature communications. 2017 Jul 12;8(1):1-9.
6. chlanges M, Bonitz M, schttschjan A. Plasma Phase ransition in Fluid Hydrogen‐Helium Mixtures. Contributions to Plasma Physics. 1995;35(2):109-25.
7. Vorberger J, Tamblyn I, Militzer B, Bonev SA. Hydrogen-helium mixtures in the interiors of giant planets. Physical Review B—Condensed Matter and Materials Physics. 2007 Jan 1;75(2):024206.
8. Nettelmann N, Püstow R, Redmer R. Saturn layered structure and homogeneous evolution models with different EOSs. Icarus. 2013 Jul 1;225(1):548-57.
9. Saumon D, Hubbard WB, Chabrier G, Van Horn HM. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 391, no. 2, June 1, 1992, p. 827-831. 1992 Jun;391:827-31

10. Chabrier G. Quantum effects in dense Coulumbic matter-Application to the cooling of white dwarfs. Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 414, no. 2, p. 695-700. 1993 Sep;414:695-700.
11. Chabrier G, Brassard P, Fontaine G, Saumon D. Cooling sequences and color-magnitude diagrams for cool white dwarfs with hydrogen atmospheres. The Astrophysical Journal. 2000 Nov 1;543(1):216.
12. Haensel P, Potekhin AY, Yakovlev DG. Neutron Stars 1: Equation of State and Structure. NY: Springer; 2006.
13. Daligault J, Gupta S. Electron–ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star. The Astrophysical Journal. 2009 Sep 3;703(1):994.
14. Craighead HG. Nanoelectromechanical systems. Science. 2000 Nov 24;290(5496):1532-5.
15. Manfredi G, Hervieux PA. Autoresonant control of the many-electron dynamics in nonparabolic quantum wells. Appl Phys Lett. 2007;91. DOI: 10.1063/1.2761246.
16. Ang LK, Zhang P. Ultrashort-pulse Child-Langmuir law in the quantum and relativistic regimes. Physical review letters. 2007 Apr 20;98(16):164802.
17. Ghosh S, Dubey S, Vanshpal R. Quantum effect on parametric amplification characteristics in piezoelectric semiconductors. Physics Letters A. 2010 Nov 15;375(1):43-7.
18. Berggren F, Ji Z . uantum chaos in nano‐sized billiards in layered t o‐dimensional semiconductor structures. Chaos: an interdisciplinary journal of nonlinear science. 1996 Dec 1;6(4):543-53.
19. Crouseilles N, Hervieux PA, Manfredi G. Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Physical Review B—Condensed Matter and Materials Physics. 2008 Oct 15;78(15):155412.
20. Shpatakovskaya GV. Semiclassical model of a one-dimensional quantum dot. Journal of Experimental and Theoretical Physics. 2006 Mar;102:466-74

21. Haas F, Manfredi G, Shukla PK, Hervieux PA. Breather mode in the many-electron dynamics of semiconductor quantum wells. Physical Review B—Condensed Matter and Materials Physics. 2009 Aug 15;80(7):073301.
22. Robinson MP, Tolra BL, Noel MW, Gallagher TF, Pillet P. Spontaneous evolution of Rydberg atoms into an ultracold plasma. Physical review letters. 2000 Nov 20;85(21):4466.
23. Glenzer SH, Landen OL, Neumayer P, Lee RW, Widmann K, Pollaine SW, Wallace RJ, Gregori G, Höll A, Bornath T, Thiele R. Observations of plasmons in warm dense matter. Physical review letters. 2007 Feb 9;98(6):065002.
24. Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Reviews of modern physics. 2006 Apr;78(2):309-71.
25. Marklund M, Brodin G, Stenflo L, Liu CS. New quantum limits in plasmonic devices. Europhysicsletters. 2008 Sep 22;84(1):17006.
26. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. nature. 2003 Aug;424(6950):824-30.
27. Killian TC. Cool vibes. Nature. 2006 May 18;441(7091):297-8.
28. Chabrier G, Douchin F, Potekhin AY. Dense astrophysical plasmas. Journal of Physics: Condensed Matter. 2002 Sep 27;14(40):9133.
29. Becker K. KH. and Schoenbach, J. Eden, Microplasmas and applications. J. Phys. D Appl. Phys. 2006;39(3).
30. Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R. The National Ignition Facility: Ushering in a new age for high energy density science. Physics of Plasmas. 2009 Apr 1;16(4).
31. Hurricane OA, Callahan DA, Casey DT, Dewald EL, Dittrich TR, Döppner T, Haan S, Hinkel DE, Berzak Hopkins LF, Jones O, Kritcher AL. Inertially confined fusion plasmas dominated by alphaparticle self-heating. Nature Physics. 2016 Aug;12(8):800-6.
32. Matzen MK, Sweeney MA, Adams RG, Asay JR, Bailey JE, Bennett GR, Bliss DE, Bloomquist DD, Brunner TA, Campbell RE, Chandler GA. Pulsed-power-driven high energy density physics and inertial confinement fusion research. Physics of Plasmas. 2005 May 1;12(5).

33. Shuryak E. Physics of strongly coupled quark–gluon plasma. Progress in Particle and Nuclear Physics. 2009 Jan 1;62(1):48-101.
34. Filinov VS, Ivanov YB, Fortov VE, Bonitz M, Levashov PR. Color path-integral Monte-Carlo simulations of quark-gluon plasma: Thermodynamic and transport properties. Physical Review C—Nuclear Physics. 2013 Mar;87(3):035207.
35. Pierleoni C, Holzmann M, Ceperley DM. Local structure in dense hydrogen at the liquid–liquid phase transition by coupled electron–ion Monte Carlo. Contributions to Plasma Physics. 2018 Feb;58(2-3):99-106.
36. Bonitz M, Filinov VS, Fortov VE, Levashov PR, Fehske H. Crystallization in two-component Coulomb systems. Physical review letters. 2005 Dec 2;95(23):235006.
37. Bonitz M, Filinov VS, Fortov VE, Levashov PR, Fehske H. Hole crystallization in semiconductors. Journal of Physics A: Mathematical and General. 2006 Apr 7;39(17):4717.
38. Kremp D, Schlanges M, Kraeft WD. Quantum statistics of nonideal plasmas. Springer Science & Business Media; 2005 Dec 11.
39. Bonitz M. Quantum kinetic theory. Berlin: Springer; 2016.
40. Haas F. Quantum plasmas: An hydrodynamic approach. Springer Science & Business Media; 2011 Aug 27.
41. Shukla PK, Eliasson B. Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Reviews of Modern Physics. 2011 Jul 1;83(3):885-906.
42. Shukla PK, Eliasson B. Nonlinear aspects of quantum plasma physics. Physics-Uspekhi. 2010 Jan
31;53(1):51.

43. Manfredi G. How to model quantum plasmas. Fields Inst. Commun. 2005 Apr;46:263-87.
44. Haas F. An introduction to quantum plasmas. Brazilian Journal of Physics. 2011 Dec;41:349-63.
45. Moldabekov ZA, Bonitz M, Ramazanov TS. Theoretical foundations of quantum hydrodynamics for plasmas. Physics of Plasmas. 2018 Mar 1;25(3).
46. Bonitz M, Moldabekov ZA, Ramazanov TS. Quantum hydrodynamics for plasmas—Quo vadis?. Physics of Plasmas. 2019 Sep 1;26(9).
47. Vladimirov SV, Tyshetskiy YO. On description of a collisionless quantum plasma. PhysicsUspekhi. 2011 Dec 31;54(12):1243.
48. Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Physical Review. 1953 Nov 1;92(3):609.
49. Klimontovich Y, Silin V. P. O. Spectra of systems of interacting particles. J. Exp. Theor. Phys. 1952;23: 151–160.
50. Lindhard J. On the properties of a gas of charged particles. Kgl. Danske Videnskab. Selskab Mat.- Fys. Medd.. 1954 Jan 1;28.
51. Pines D, Nozières P. The Theory of Quantum Liquids. USA: Benjamin; 1966.
52. GD Mahan: Many-Particle Physics, Plenum Press, New York and London, 1981.
53. Cockayne E, Levine ZH. Wake fields in the electron gas including transverse response. Physical Review B—Condensed Matter and Materials Physics. 2006 Dec 15;74(23):235107.
54. Gell-Mann M, Brueckner KA. Correlation energy of an electron gas at high density. Physical Review. 1957 Apr 15;106(2):364.
55. Kelly DC. Dielectric tensor for a quantum plasma. Physical Review. 1964 May 4;134(3A):A641.
56. Pines D. Classical and quantum plasmas. Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research. 1961;2(1):5.

57. Melrose DB. Quantum plasmadynamics: unmagnetized plasmas. New York: Springer; 2008.
58. Melrose D, Melrose D. Quantum Theory of Gyromagnetic Processes. Quantum Plasmadynamics: Magnetized Plasmas. 2013:251-307.
59. Wigner E. On the interaction of electrons in metals. Physical Review. 1934 Dec 1;46(11):1002.
60. Schlanges M, Bonitz M, Tschttschjan A. Plasma Phase ransition in Fluid Hydrogen‐Helium Mixtures. Contributions to Plasma Physics. 1995;35(2):109-25.
61. Vorberger J, Tamblyn I, Bonev SA, Militzer B. Properties of dense fluid hydrogen and helium in giant gas planets. contributions to Plasma Physics. 200 Jul; ‐ :3 -80.

62. Däppen W, Nayfonov A. The Sun as an equation-of-state laboratory. The Astrophysical Journal Supplement Series. 2000 Apr 1;127(2):287.
63. Segretain L. Three-body crystallization diagrams and the cooling of white dwarfs. arXiv preprint astro-ph/9510118. 1995 Oct 23.
64. Loubeyre P, Celliers PM, Hicks DG, Henry E, Dewaele A, Pasley J, Eggert J, Koenig M, Occelli F, Lee KM, Jeanloz R. Coupling static and dynamic compressions: first measurements in dense hydrogen. High pressure research. 2004 Jan 1;24(1):25-31.
65. Hess H. Dense‐Plasma Research Using Ballistic ompressors. Beiträge aus der Plasmaphysik. 1986;26(4):209-30.
66. Matzen MK, Deeney C, Leeper RJ, Porter JL, Spielman RB, Chandler GA, Derzon MS, Douglas MR, Fehl DL, Hebron DE, Nash TJ. Fast z-pinches as dense plasma, intense x-ray sources for plasma physics and fusion applications. Plasma physics and controlled fusion. 1999 Mar 1;41(3A):A175.
67. Mintsev VB, Fortov VE. Dense plasma properties from shock wave experiments. Journal of Physics A: Mathematical and General. 2006 Apr 7;39(17):4319.
68. Hoffmann DH, Blazevic A, Rosmej ON, Spiller P, Tahir NA, Weyrich K, Dafni T, Kuster M, Roth M, Udrea S, Varentsov D. Frontiers of dense plasma physics with intense ion and laser beams and accelerator technology. Physica Scripta. 2006 Mar 17;2006(T123):1

69. Thoma MH. Strongly coupled plasmas in high-energy physics. IEEE transactions on plasma science. 2004 Apr;32(2):738-41.
70. Hofmann M, Bleicher M, Scherer S, Neise L, Stöcker H, Greiner W. Statistical mechanics of colored objects. Physics Letters B. 2000 Apr 6;478(1-3):161-71.
71. Peshier A, Kämpfer B, Soff G. From QCD lattice calculations to the equation of state of quark matter. Physical Review D. 2002 Nov 12;66(9):094003.
72. Gelman BA, Shuryak EV, Zahed I. Classical strongly coupled quark-gluon plasma. I. Model and molecular dynamics simulations. Physical Review C—Nuclear Physics. 2006 Oct;74(4):044908.
73. Filinov VS, Fortov VE, Bonitz M, Kremp D. Pair distribution functions of dense partially ionized hydrogen. Physics Letters A. 2000 Sep 25;274(5-6):228-35.
74. Landau LD, Lifshitz EM. Quantum mechanics: non-relativistic theory. Elsevier; 2013 Oct 22.
75. atarskiĭ VI. he Wigner representation of quantum mechanics. oviet Physics Uspekhi. 19 3 Apr 30;26(4):311.
76. Kodama R, Norreys PA, Mima K, Dangor AE, Evans RG, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature. 2001 Aug 23;412(6849):798-802.
77. Kuzelev MV, Rukhadze AA. Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasma. Physics-Uspekhi. 2011 Apr 30;54(4):375.
78. Wigner E. On the quantum correction for thermodynamic equilibrium. Physical review. 1932 Jun 1;40(5):749.
79. Wilhelm HE. Hydrodynamic model of quantum mechanics. Physical Review D. 1970 Apr 15;1(8):2278.
80. Perry MD, Mourou G. Terawatt to petawatt subpicosecond lasers. Science. 1994 May 13;264(5161):917-24.

81. Nuckolls J, Wood L, Thiessen A, Zimmerman G. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature. 1972 Sep 15;239(5368):139-42.
82. Landau LD, Lifshitz EM. Course of theoretical physics. Elsevier; 2013 Oct 22.
83. Klimontovich YL. What are stochastic filtering and stochastic resonance?. Physics-uspekhi. 1999 Jan 31;42(1):37.
84. Klimontovich IL. Spectra of the systems of interacting particles. US Atomic Energy Commission. 1952.
85. Moyal JE. Quantum mechanics as a statistical theory. InMathematical Proceedings of the Cambridge Philosophical Society 1949 Jan (Vol. 45, No. 1, pp. 99-124). Cambridge University Press.

86. Vlasov AA. The vibrational properties of an electron gas. Soviet Physics Uspekhi. 1968 Jun 30;10(6):721.
87. Hartree DR. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. InMathematical Proceedings of the Cambridge Philosophical Society 1928 Jan (Vol. 24, No. 1, pp. 89-110). Cambridge university press.
88. Fock V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik. 1930 Jan;61:126-48.
89. uz’menkov , Maksimov , Fedoseev VV. Microscopic quantum hydrodynamics of systems of fermions: II. Theoretical and Mathematical Physics. 2001 Feb;126(2):21223.
90. Andreev PA, uz’menkov . Eigen aves in a to-component system of particles with nonzero magnetic moments. Moscow University Physics Bulletin. 2007 Oct;62(5):271-6.
91. Brodin G, Marklund M, Manfredi G. Quantum plasma effects in the classical regime. Physical review letters. 2008 May 2;100(17):175001.
92. Misra AP, Brodin G, Marklund M, Shukla PK. Circularly polarized modes in magnetized spin plasmas. Journal of plasma physics. 2010 Dec;76(6):857-64.
93. Andreev PA, uz’Menkov . Waves of magnetic moment and generation of aves by neutron beam in quantum magnetized plasma. International Journal of Modern Physics B. 2012 Dec 30;26(32):1250186

 


Regular Issue Subscription Review Article
Volume 13
Issue 01
Received April 4, 2024
Accepted July 26, 2024
Published August 3, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.