Progeria Syndrome Unveiled: A Scientific Odyssey into Premature Aging Mechanisms and Therapeutic Frontiers

Year : 2024 | Volume :14 | Issue : 02 | Page : 52-68
By

Aanchal Verma,

Maitry Goel,

Vibha Gupta,

  1. Research Scholar Department of Biotechnology, Jaypee Institute of Information Technology, Uttar Pradesh, India
  2. U.G Student Department of Biotechnology, Jaypee Institute of Information Technology, Uttar Pradesh, India
  3. Associate Professor Department of Biotechnology, Jaypee Institute of Information Technology, Uttar Pradesh, India

Abstract

Progeria, or Hutchinson-Gilford Progeria Syndrome (HGPS), is a rare and fatal genetic disorder in childhood, exhibiting features akin to premature aging. Despite normal appearances in infancy, affected children face accelerated aging with distinct facial characteristics, including micrognathia, dental malformations, lower body weight, early hair loss, decreased joint mobility, lipodystrophy, etc. The cause of HGPS is a point mutation that occurs at the exon 11 of the LMNA gene which normally produces Lamin A protein. This mutation leads to the formation of a mutated Lamin A protein known as progerin. Unlike normal Lamin A, progerin undergoes incomplete processing and remains permanently farnesylated and carboxymethylated. The persistent farnesylation of progerin disrupts the normal nuclear architecture and function. This abnormality contributes to various cellular defects observed in individuals with HGPS. Different therapeutic strategies are used to target progerin for the treatment of HGPS such as methylation and farnesylation inhibitors, gene therapy, development of biologicals, and a new age CRSIP-CAS9 but none of them can cure it. Despite the considerable work remaining, the progress in understanding progeria holds promise for the development of innovative treatment approaches. This study delves into the mechanism of progerin formation, changes in the body due to progerin, its complications, current therapeutic strategies, and recent advancements

Keywords: Hutchinson-Gilford Progeria Syndrome (HGPS), Micrognathia, farnesylation, LMNA gene mutation, progerin, Methylation inhibitors and Gene therapy

[This article belongs to Research & Reviews: A Journal of Health Professions(rrjohp)]

How to cite this article: Aanchal Verma, Maitry Goel, Vibha Gupta. Progeria Syndrome Unveiled: A Scientific Odyssey into Premature Aging Mechanisms and Therapeutic Frontiers. Research & Reviews: A Journal of Health Professions. 2024; 14(02):52-68.
How to cite this URL: Aanchal Verma, Maitry Goel, Vibha Gupta. Progeria Syndrome Unveiled: A Scientific Odyssey into Premature Aging Mechanisms and Therapeutic Frontiers. Research & Reviews: A Journal of Health Professions. 2024; 14(02):52-68. Available from: https://journals.stmjournals.com/rrjohp/article=2024/view=167079



References

  1. Mkrtchyan GV, Abdelmohsen K, Andreux P, Bagdonaite I, Barzilai N, Brunak S, Cabreiro F, de Cabo R, Campisi J, Cuervo AM, Demaria M. ARDD 2020: from aging mechanisms to interventions. Aging (Albany NY). 2020 Dec 12;12(24): 24484..
  2. Dominici S, Fiori V, Magnani M, Schena E, Capanni C, Camozzi D, D’Apice MR, Le Dour C, Auclair M, Caron M, Novelli G. Different prelamin A forms accumulate in human fibroblasts: a study in experimental models and progeria. European journal of histochemistry: EJH. 2009 Mar 3;53(1).
  3. Hayflick L. The future of ageing. Nature. 2000 Nov 9;408(6809):267-9. Available here – https://www.nature.com/articles/35041709
  4. Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes & development. 2002 Mar 1;16(5):533-47.
  5. Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing research reviews. 2017 Jan 1;33:18-29.
  6. Harman D. The free radical theory of aging. Antioxidants and Redox Signaling. 2003 Oct 1;5(5):557-61.
  7. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm‐aging: an evolutionary perspective on immunosenescence. Annals of the new York Academy of Sciences. 2000 Jun;908(1):244-54.
  8. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PloS one. 2007 Dec 5;2(12):e
  9. Kochman K. New elements in modern biological theories of aging. Medical Research Journal. 2015;3(3):89-99.
  10. Weinert BT, Timiras PS. Invited review: Theories of aging. Journal of applied physiology. 2003 Oct;95(4):1706-16.
  11. Sies H, Berndt C, Jones DP. Oxidative stress. Annual review of biochemistry. 2017 Jun 20;86(1):715-48.
  12. Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2002 Nov 30;509(1-2):127-51.
  13. Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, Chen Q, Bruce-Keller AJ, Keller JN. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. Journal of Biological Chemistry. 2004 May 14;279(20):20699-707.
  14. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences. 1988 Sep;85(17):6465-7.
  15. Alexeyev MF, LeDoux SP, Wilson GL. Mitochondrial DNA and aging. Clinical Science. 2004 Oct 1;107(4):355-64.
  16. Ahmed A, Tollefsbol T. Telomeres and telomerase: basic science implications for aging. Journal of the American Geriatrics Society. 2001 Aug;49(8):1105-9.
  17. Kochman K. New elements in modern biological theories of aging. Medical Research Journal. 2015;3(3):89-99.
  18. Weinert BT, Timiras PS. Invited review: Theories of aging. Journal of applied physiology. 2003 Oct;95(4):1706-16.
  19. Schai-Braun SC, Steiger P, Ruf T, Arnold W, Hackländer K. Maternal effects on reproduction in the precocial European hare (Lepus europaeus). Plos one. 2021 Feb 17;16(2):e0247174.
  20. Hagen TM. Oxidative stress, redox imbalance, and the aging process. Antioxidants and Redox Signaling. 2003 Oct 1;5(5):503-6. [
  21. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. nature. 2000 Nov 9;408(6809):239-47.
  22. Santos JH, Meyer JN, Mandavilli BS, Van Houten B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. DNA repair protocols: mammalian systems. 2006:183-99.
  23. Allan Butterfield D. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free radical research. 2002 Jan 1;36(12):1307-13.
  24. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences. 1988 Sep;85(17):6465-7.
  25. Ames BN, Gold LS. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science. 1990 Aug 31;249(4972):970-1.
  26. Cebioglu M, Schild HH, Golubnitschaja O. Cancer predisposition in diabetics: risk factors considered for predictive diagnostics and targeted preventive measures. EPMA Journal. 2010 Mar;1:130-7.
  27. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Experimental cell research. 1965 Mar 1;37(3):614-36.
  28. Ahmed A, Tollefsbol TO. Telomerase, telomerase inhibition, and cancer. Journal of anti-aging medicine. 2003 Dec 1;6(4):315-25.
  29. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997 Apr 25;276(5312):561-7.
  30. de Lange T. Human telomeres are attached to the nuclear matrix. The EMBO journal. 1992 Feb 1;11(2):717-24.
  31. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128-30.
  32. Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM. A Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1*♦. Journal of Biological Chemistry. 2008 Sep 5;283(36):24972-81.
  33. Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998 Oct 30;282(5390):943-6.
  34. Halliwell B. Biochemistry of oxidative stress. Biochemical society transactions. 2007 Nov 1;35(5):1147-50.
  35. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Human molecular genetics. 2011 Oct 15;20(20):3997-4004.
  36. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Human molecular genetics. 2011 Oct 15;20(20):3997-4004.
  37. SALK D. Can we learn about aging from a study of Werner’s syndrome?. Journal of the American Geriatrics Society. 1982 May;30(5):334-9.
  38. CB, HARLEY. “Telomeres shorten during ageing of human fibroblasts.” Nature 345 (1990): 485-460.
  39. AG B. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;16:334-5.
  40. Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Current Biology. 1998 Feb 26;8(5):279-82.
  41. VJ C. Relationship between donor age and replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA. 1998;95:10614-9.
  42. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999 Mar 5;96(5):701-12.
  43. Linnane A, Ozawa T. The role of mitochondria in aging: the telomere connection. In: McManus MJ, Bains H, Hendler R, eds. Free Radicals, Aging, and Degenerative Diseases. Springer, Boston, MA; 1989: 181-190.
  44. Das M, Dempsey EC, Reeves JT, Stenmark KR. Selective expansion of fibroblast subpopulations from pulmonary artery adventitia in response to hypoxia. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2002 May 1;282(5):L976-86.
  45. Mkaouar-Rebai E, Chamkha I, Mezghani N, Ayed IB, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. Mitochondrial DNA. 2013 Jun 1;24(3):163-78.
  46. Müller-Höcker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart–an age-related phenomenon. A histochemical ultracytochemical study. The American journal of pathology. 1989 May;134(5):1167.
  47. Xiong ZM, Choi JY, Wang K, Zhang H, Tariq Z, Wu DI, Ko E, LaDana C, Sesaki H, Cao K. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria. Aging cell. 2016 Apr;15(2):279-90.
  48. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. The international journal of biochemistry & cell biology. 2013 Oct 1;45(10):2288-301.
  49. Khrapko K, Vijg J. “Mitochondrial DNA mutations and aging: devils in the details?” Trends in Genetics. 2009;25(2):91-98. doi:10.1016/j.tig.2008.11.007
  50. Bua E. “Mitochondrial DNA levels in aged human skeletal muscle fibers.” American Journal of Physiology. 2003; 480
  51. Wanagat J, et al. “Aging and mitochondria: a critical analysis.” Comprehensive Physiology. 2011;1(1):51-59.
  52. Wei Soong N, et al. “Detection of mitochondrial DNA deletions in human skin fibroblasts of patients with dege 182(2): 983-987.
  53. Dufour E, et al. “Mitochondria and aging: Bumpy time in the brain.” Frontiers in Aging Neuroscience, 2014, 6: 175.
  54. Khrapko K, Vijg J. “Mitochondrial DNA mutations Genetics, 2009, 25(2): 91-98
  55. Kreienkamp R, Croke M, Neumann MA, Bedia-Diaz G, Graziano S, Dusso A, Dorsett D, Carlberg C, Gonzalo S. Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget. 2016 May 5;7(21):30018.
  56. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PloS one. 2007 Dec 5;2(12):e1269.
  57. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proceedings of the National Academy of Sciences. 2007 Mar 20;104(12):4949-54.
  58. Luo YB, Mitrpant C, Johnsen RD, Fabian VA, Fletcher S, Mastaglia FL, Wilton SD. Investigation of age-related changes in LMNA splicing and expression of progerin in human skeletal muscles. International journal of clinical and experimental pathology. 2013;6(12):2778.
  59. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006 May 19;312(5776):1059-63.
  60. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D. Genomic instability in laminopathy-based premature aging. Nature medicine. 2005 Jul 1;11(7):780-5.
  61. Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nature medicine. 2005 Apr 1;11(4):440-5.
  62. Aebi U, Cohn J, Buhle L, Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 1986 Oct 9;323(6088):560-4.
  63. Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M. The processing pathway of prelamin A. Journal of cell science. 1994 Jan 1;107(1):61-7.
  64. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N. Lamin a truncation in Hutchinson-Gilford progeria. 2003 Jun 27;300(5628):2055-.
  65. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & development. 2005 Sep 15;19(18):2100-10.
  66. Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Experimental gerontology. 1996 Jul 1;31(4):443-8.
  67. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. The Journal of clinical investigation. 2011 Jul 1;121(7):2833-44.
  68. Wallis CV, Sheerin AN, Green MH, Jones CJ, Kipling D, Faragher RG. Fibroblast clones from patients with Hutchinson–Gilford progeria can senesce despite the presence of telomerase. Experimental gerontology. 2004 Apr 1;39(4):461-7.
  69. Shawi M, Autexier C. Telomerase, senescence and ageing. Mechanisms of ageing and development. 2008 Jan 1;129(1-2):3-10.
  70. Varela, Ignacio et al. “Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation.” Nature vol. 437,7058 (2005): 564-8. doi:10.1038/nature04019
  71. Cao, Kan et al. “Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts.” The Journal of clinical investigation vol. 121,7 (2011): 2833-44. doi:10.1172/JCI43578
  72. Ray, Paul D et al. “Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.” Cellular signalling vol. 24,5 (2012): 981-90. doi:10.1016/j.cellsig.2012.01.008
  73. Bartz, Raquel R, and Claude A Piantadosi. “Clinical review: oxygen as a signaling molecule.” Critical care (London, England) vol. 14,5 (2010): 234. doi:10.1186/cc9185
  74. Kubben, Nard et al. “Repression of the Antioxidant NRF2 Pathway in Premature Aging.” Cell vol. 165,6 (2016): 1361-1374. doi:10.1016/j.cell.2016.05.017
  75. Richards, Shane A et al. “The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine.” Human molecular genetics vol. 20,20 (2011): 3997-4004. doi:10.1093/hmg/ddr327
  76. Alexeyev, Mikhail F et al. “Mitochondrial DNA and aging.” Clinical science (London, England :(1979) vol. 107,4 (2004): 355-64. doi:10.1042/CS20040148
  77. Cho S, Vashisth M, Abbas A, Majkut S, Vogel K, Xia Y, Ivanovska IL, Irianto J, Tewari M, Zhu K, Tichy ED. Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest. Developmental cell. 2019 Jun 17;49(6):920-35. doi:10.1016/j.devcel.2019.04.020
  78. Saitoh, M et al. “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.” The EMBO journal vol. 17,9 (1998): 2596-606. doi:10.1093/emboj/17.9.2596
  79. Kyriakis, J M, and J Avruch. “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.” Physiological reviews vol. 81,2 (2001): 807-69. doi:10.1152/physrev.2001.81.2.807
  80. von Zglinicki, T et al. “Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence?.” Experimental cell research vol. 220,1 (1995): 186-93. doi:10.1006/excr.1995.1305
  81. von Zglinicki, T et al. “Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts.” Free radical biology & medicine vol. 28,1 (2000): 64-74. doi:10.1016/s0891-5849(99)00207-5
  82. Csoka, Antonei B et al. “Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis.” Aging cell vol. 3,4 (2004): 235-43. doi:10.1111/j.1474- 9728.2004.00105.x
  83. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proceedings of the National Academy of Sciences. 2006 Jun 6;103(23):8703-8.
  84. McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, Collins FS, Dekker J, Cao K. Correlated alterations in genome organization, histone methylation, and DNA–lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome research. 2013 Feb 1;23(2):260-9.
  85. Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T, Foisner R. A-type lamins bind both hetero-and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome research. 2016 Apr 1;26(4):462-73.
  86. Vidak S, Kubben N, Dechat T, Foisner R. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes & development. 2015 Oct 1;29(19):2022-36.
  87. Chojnowski A, Ong PF, Wong ES, Lim JS, Mutalif RA, Navasankari R, Dutta B, Yang H, Liow YY, Sze SK, Boudier T. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. Elife. 2015 Aug 27;4:e07759.
  88. Loi M, Cenni V, Duchi S, Squarzoni S, Lopez-Otin C, Foisner R, Lattanzi G, Capanni C. Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget. 2016 Mar 3;7(13):15662.
  89. Osmanagic-Myers S, Dechat T, Foisner R. Lamins at the crossroads of mechanosignaling. Genes & development. 2015 Feb 1;29(3):225-37.
  90. Van Berlo JH, Voncken JW, Kubben N, Broers JL, Duisters RF, van Leeuwen RE, Crijns HJ, Ramaekers FC, Hutchison CJ, Pinto YM. A-type lamins are essential for TGF-β1 induced PP2A to dephosphorylate transcription factors. Human molecular genetics. 2005 Oct 1;14(19):2839-49.
  91. Ivorra C, Kubicek M, González JM, Sanz-González SM, Álvarez-Barrientos A, O’Connor JE, Burke B, Andrés V. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes & development. 2006 Feb 1;20(3):307-20.
  92. Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nature cell biology. 2008 Apr;10(4):452-9.
  93. Espada J, Varela I, Flores I, Ugalde AP, Cadiñanos J, Pendás AM, Stewart CL, Tryggvason K, Blasco MA, Freije JM, López-Otín C. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. The Journal of cell biology. 2008 Apr 7;181(1):27-35.
  94. Hernandez L, Roux KJ, Wong ES, Mounkes LC, Mutalif R, Navasankari R, Rai B, Cool S, Jeong JW, Wang H, Lee HS. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Developmental cell. 2010 Sep 14;19(3):413-25.
  95. Muchir A, Wu W, Choi JC, Iwata S, Morrow J, Homma S, Worman HJ. Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Human molecular genetics. 2012 Oct 1;21(19):4325-33.
  96. Kreienkamp R, Croke M, Neumann MA, Bedia-Diaz G, Graziano S, Dusso A, Dorsett D, Carlberg C, Gonzalo S. Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. Oncotarget. 2016 May 5;7(21):30018.
  97. Wong KE, Szeto FL, Zhang W, Ye H, Kong J, Zhang Z, Sun XJ, Li YC. Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. American journal of physiology-endocrinology and metabolism. 2009 Apr;296(4): E820-8. doi:10.1152/ajpendo.90763.2008
  98. García-García VA, Alameda JP, Page A, Casanova ML. Role of NF-κB in ageing and age-related diseases: lessons from genetically modified mouse models. Cells. 2021 Jul 27;10(8):1906.
  99. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences. 2004 Jun 15;101(24):8963-8.
  100. Capanni C, Cenni V, Haraguchi T, Squarzoni S, Schüchner S, Ogris E, Novelli G, Maraldi N, Lattanzi G. Lamin A precursor induces barrier-to-autointegration factor nuclear localization. Cell cycle. 2010 Jul 1;9(13):2600-10.
  101. Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer A, Yang CS, Cubeñas-Potts C, Matunis MJ, Paschal BM. The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Molecular and Cellular Biology. 2011 Aug 1.
  102. Bejaoui Y, Razzaq A, Yousri NA, Oshima J, Megarbane A, Qannan A, Potabattula R, Alam T, Martin GM, Horn HF, Haaf T. DNA methylation signatures in Blood DNA of Hutchinson–Gilford Progeria syndrome. Aging Cell. 2022 Feb;21(2):e13555.
  103. Zhang W, Ji W, Yang J, Yang L, Chen W, Zhuang Z. Comparison of global DNA methylation profiles in replicative versus premature senescence. Life sciences. 2008 Sep 26;83(13-14):475-80.
  104. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS genetics. 2009 Aug 14;5(8):e1000602.
  105. Köhler F, Bormann F, Raddatz G, Gutekunst J, Corless S, Musch T, Lonsdorf AS, Erhardt S, Lyko F, Rodríguez-Paredes M. Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Medicine. 2020 Dec;12:1-6.
  106. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006 May 19;312(5776):1059-63.
  107. Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Rolas L, Barkaway A, Nourshargh S, Folgueras AR, Freije JM. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nature medicine. 2019 Mar;25(3):423-6.
  108. Lin P, Jiang J, Wu M. CRISPR base editor treats premature-aging syndrome. Signal Transduction and Targeted Therapy. 2021 Apr 16;6(1):158.
  109. Beyret E, Liao HK, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, Reddy P, Izpisua Belmonte JC. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nature medicine. 2019 Mar;25(3):419-22.
  110. Lee JM, Nobumori C, Tu Y, Choi C, Yang SH, Jung HJ, Vickers TA, Rigo F, Bennett CF, Young SG, Fong LG. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. The Journal of clinical investigation. 2016 Apr 1;126(4):1592-602.
  111. McNally EM, Wyatt EJ. Welcome to the splice age: antisense oligonucleotide–mediated exon skipping gains wider applicability. The Journal of Clinical Investigation. 2016 Apr 1;126(4):1236-8.
  112. Erdos MR, Cabral WA, Tavarez UL, Cao K, Gvozdenovic-Jeremic J, Narisu N, Zerfas PM, Crumley S, Boku Y, Hanson G, Mourich DV. A targeted antisense therapeutic approach for Hutchinson–Gilford progeria syndrome. Nature medicine. 2021 Mar;27(3):536-45.
  113. Graziotto JJ, Cao K, Collins FS, Krainc D. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy. 2012 Jan 1;8(1):147-51.
  114. So-mi K, Min-Ho Y, Jinsook A, Young KS, Kang SY, Jeongmin J, Park S, Jung-Hyun C, Tae-Gyun W, Ah-Young O, Jin CK. Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome. Communications Biology. 2021;4(1).
  115. Basso AD, Kirschmeier P, Bishop WR. Thematic review series: lipid posttranslational modifications. Farnesyl transferase inhibitors. Journal of lipid research. 2006 Jan 1;47(1):15-31.
  116. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proceedings of the National Academy of Sciences. 2005 Sep 6;102(36):12873-8.
  117. Yang SH, Qiao X, Fong LG, Young SG. Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson–Gilford progeria syndrome mutation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2008 Jan 1;1781(1-2):36-9.
  118. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. The Journal of clinical investigation. 2006 Aug 1;116(8):2115-21.
  119. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proceedings of the National Academy of Sciences. 2012 Oct 9;109(41):16666-71.
  120. Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus. 2018 Dec 31;9(1):265-76.
  121. Gordon LB, Kleinman ME, Massaro J, D’Agostino Sr RB, Shappell H, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland RH, Nazarian A, Snyder BD. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016 Jul 12;134(2):114-25.
  122. Gordon LB, Kleinman ME, Massaro J, D’Agostino Sr RB, Shappell H, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland RH, Nazarian A, Snyder BD. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016 Jul 12;134(2):114-25.
  123. Kang HT, Park JT, Choi K, Choi HJ, Jung CW, Kim GR, Lee YS, Park SC. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson‐Gilford progeria syndrome. Aging cell. 2017 Jun;16(3):541-10.3390/cells12020275
  124. Monterrubio-Ledezma F, Navarro-García F, Massieu L, Mondragón-Flores R, Soto-Ponce LA, Magaña JJ, Cisneros B. Rescue of mitochondrial function in hutchinson-gilford progeria syndrome by the pharmacological modulation of exportin CRM1. Cells. 2023 Jan 10;12(2):275.
  125. Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Scientific reports. 2017 Oct 26;7(1):14130.
  126. Li Y, Zhou G, Bruno IG, Zhang N, Sho S, Tedone E, Lai TP, Cooke JP, Shay JW. Transient introduction of human telomerase mRNA improves hallmarks of progeria cells. Aging Cell. 2019 Aug;18(4):e12979.
  127. Mojiri A, Walther BK, Jiang C, Matrone G, Holgate R, Xu Q, Morales E, Wang G, Gu J, Wang R, Cooke JP. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. European Heart Journal. 2021 Nov 7;42(42):4352-69.

Regular Issue Subscription Review Article
Volume 14
Issue 02
Received June 13, 2024
Accepted July 27, 2024
Published August 14, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.