A Review on Nanosponges Drug Delivery System

Year : 2025 | Volume : 12 | Issue : 02 | Page : 68 76
    By

    Rohit S. Marathe,

  • Yogesh B. Rokote,

  1. Student, B. Pharm, Department of Pharmaceutics, P.S.G.V.P., Mandal’s College of Pharmacy, Shahada, Maharashtra, India
  2. Student, B. Pharm, Department of Pharmaceutics, P.S.G.V.P., Mandal’s College of Pharmacy, Shahada, Maharashtra, India

Abstract

The main issue that the researchers are dealing with is targeted medication delivery to locations. Crosslinking polymers produce nanosponges, which are three-dimensional drug delivery systems at the nanoscale. They have the benefit of having a large capacity to carry different-sized medications. There are numerous sizes and shapes for nanosponges. Compared to alternative delivery methods, nanosponges are preferable because they may offer a regulated medication release pattern with targeted Medication administration. Both the duration of the drug’s effect and its residence time may be controlled. The size of the drug molecule and the volume of empty space that is available dictate how well a drug is encapsulated. Applications for nanosponges include cancer treatment, oxygen delivery, enzyme and biocatalyst transporter solubility improvement, enzyme immobilization, and toxin absorbent. The process by which production, description, elements influencing the formation of nanosponges, drug loading and release mechanism, and the latest. This study highlights advancements made in this field and patents filed pertaining to nanosponges.

Keywords: Nanosponges, drug delivery system, nanoparticles, drug release profile, drug design

[This article belongs to Research & Reviews: A Journal of Drug Design & Discovery ]

How to cite this article:
Rohit S. Marathe, Yogesh B. Rokote. A Review on Nanosponges Drug Delivery System. Research & Reviews: A Journal of Drug Design & Discovery. 2025; 12(02):68-76.
How to cite this URL:
Rohit S. Marathe, Yogesh B. Rokote. A Review on Nanosponges Drug Delivery System. Research & Reviews: A Journal of Drug Design & Discovery. 2025; 12(02):68-76. Available from: https://journals.stmjournals.com/rrjoddd/article=2025/view=228497


References

1. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. EP 1 786 841 B1. United States patent application US 11/630,403. 2008 Sep 4.
2. David F. Nanosponge drug delivery system more effective than direct injection. Pharm Dev Technol. 2011;16(4):367–376.
3. Trotta F, Tumiatti V, Cavalli R, Rogero C, Mognetti B, Berta G. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO 2009/003656 A1. 2009.
4. Aritomi H, Yamasaki Y, Yamada K, Honda H, Khoshi M. Development of sustained release formulation of chlorpheniramine maleate using powder coated microsponges prepared by dry impact blending method. J Pharm Sci Technol. 1996;56(1):49–56.
5. Yurtdaş G, Demirel M, Genç L. Inclusion complexes of fluconazole with β-cyclodextrin: Physicochemical characterization and in vitro evaluation of its formulation. J Incl Phenom Macrocycl Chem. 2011;70:429–435. doi: 10.1007/s10847-010-9908-z.
6. Zuruzi S, MacDonald NC, Moskovits M, Kolmakov A. Metal oxide nanosponges as chemical sensors: Highly sensitive detection of hydrogen using nanosponge titania. Angew Chem Int Ed. 2007;46(23):4298–4301. doi: 10.1002/anie.200700006.
7. Selvamuthukumar S. Nanosponges: A novel class of drug delivery system—review. J Pharm Pharm Sci. 2012;15(1):103–11.
8. Ambel V, Shailendra S, Swarnalatha S. J Incl Phenom Macrocycl Chem. 2008;62:23–42.
9. Subramanian S, Reddy SA, Kannan K, Rajappan M. Nanosponges: A novel class of drug delivery system – review. J Pharm Pharm Sci. 2012;15:103–111. doi: 10.18433/j3k308.
10. Naga SJ, Nissankararao S, Bhimavarapu R, Sravanthi SL, Vinusha K. Nanosponges: A versatile drug delivery system. Int J Pharm Life Sci. 2013;4(8).
11. Sharma R, Roderick B, Pathak K. Evaluation of kinetics and mechanism of drug release from econazole nitrate nanosponges loaded carbopol hydrogel. Indian J Pharm Educ Res. 2011;55(1):25–31.
12. Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayurveda Pharm. 2011;2(5):1520–1526.
13. Guo L, Gao G, Liu X, Liu F. Preparation and characterization of TiO₂ nanosponge. Mater Chem Phys. 2008;111(2):322–325. doi: 10.1186/1556-276X-6-551.
14. Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayurveda Pharm. 2011;2(5):1520–6.
15. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. EP 1786841 B1. 2007 Jun 22.
16. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm. 2010;74(2):193–201. doi: 10.1016/j.ejpb.2009.11.003.
17. Subramanian S, Reddy SA, Kannan K, Rajappan M. Nanosponges: A novel class of drug delivery system – review. J Pharm Pharm Sci. 2012;15(1):103–111. doi: 10.18433/J3K308.
18. Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J Mol Catal B Enzym. 2010;62:155–161. doi: 10.1016/j.molcatb.2009.10.002.
19. Cavalli R, Rogero CM, Mognetti B, Berta GN, Tumiatti V, Trotta F. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO 2009/003656 A1. 2009.
20. Moura FC, Lago RM. Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic “nanosponges” for oil spill remediation. Appl Catal B. 2009;90(3–4):436–440. doi: 10.1016/j.apcatb.2009.04.003.
21. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems Int J Pharm. 2010;402(1–2):254–257. doi: 10.1016/j.ijpharm.2010.09.025.
22. Singh R, Bharti N, Madan J, Hiremath SN. Characterization of cyclodextrin inclusion complexes—A review. J Pharm Sci Technol. 2010;2:171–183.
23. Ramnik S, Nitin B, Jyotsana M, Horemat SN. Characterization of cyclodextrin inclusion complexes—A review. J Pharm Sci Technol. 2010;2(3):171–183.
24. Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol. 2011;16(4):367–376. doi: 10.3109/10837451003739289.
25. Guo J, Xiao Y, Lin Y, Crommen J, Jiang Z. Effect of the crosslinker type on the enantioseparation performance of β-cyclodextrin functionalized monoliths prepared by the one-pot approach. J Chromatogr A. 2016;1467:288–296. doi:10.1016/j.chroma.2016.05.078.
26. Girek T, Ciesielski W. Polymerization of β-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers. J Incl Phenom Macrocycl Chem. 2011;69(3):445–451. doi: 10.1007/s10847-010-9778-4.
27. Modi A, Tayade P. A comparative solubility enhancement profile of valdecoxib with different solubilization approaches. Indian J Pharm Sci. 2007;69(2):274–278. doi: 10.4103/0250-474X.33156.
28. Layre AM, Gref R, Richard J, Requier D, Chacun H, Appel M, et al. Nanoencapsulation of a crystalline drug. Int J Pharm. 2005;298(2):323–327. doi: 10.1016/j.ijpharm.2005.02.039.
29. Ahire PS, Bhambere DS, Patil MP, Kshirsagar SJ. Recent advances in nanosponges as a drug delivery system. Indian J Drugs. 2020;8(1):8–17.
30. Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem. 2008;62(1):23–42. doi: 10.1007/s10847-008-9456-y.
31. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013;63(3):335–358. doi: 10.2478/acph-2013-0021.
32. Rajeswari C, Alka A, Javed A, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech. 2013;6(2):E329–E357. doi: 10.1208/pt060243.
33. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech. 2005;6(2):E329–E357.
34. Patel SB, Patel HJ, Seth AK. Nanosponge drug delivery system: An overview. J Glob Pharma Technol. 2010;2(8):1–9.
35. Nacht S, Kantz M. The microsponge: A novel topical programmable delivery system. In: Topical Drug Delivery Systems. In: David WO, Anfon HA, editors. New York: Marcel Dekker; 1992. pp. 299–325.
36. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm. 2010;402(1–2):254–257. doi: 10.1016/j.ijpharm.2010.09.025.
37. Alongi J, Poskovic M, Frache A, Trotta F. Novel flame retardants containing cyclodextrin nanosponges and phosphorous compounds to enhance EVA combustion properties. Polym Degrad Stab. 2010;95(10):2093–2100. doi: 10.1016/j.polymdegradstab.2010.06.030.
38. Arnum PV. Nanosponges, a controlled-release nanoparticle system, shows promise in targeted drug delivery. Pharm Technol. 2011;35:56–60.
39. Alongi J, Poskovic M, Frache A, Trotta F. Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr Polym. 2011;86(1):127–135. doi: 10.1016/j.carbpol.2011.04.022.
40. Ansari K, Torne S, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterization, stability, cytotoxicity and permeation study. AAPS Pharm Sci Tech. 2011;12(1):279–286. doi: 10.1208/s12249-011-9584-3.
41. Trotta F, Cavalli R, Martina K, Biasizzo M, Vitillo JG, et al. Cyclodextrin nanosponges as effective gas carriers. J Inclusion Phenom Macrocyclic Chem. 2013;4(8):2920–2925. doi: 10.1007/s10847-011-9926-5.
42. Cavalli R, Ansari KA, Bisazza A, Giustetto P, Trotta F. Cyclodextrin-based nanosponges for pharmaceutical applications. J Incl Phenom Macrocycl Chem. 2022. doi:10.1007/s10847-011-9926-5.
43. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech. 2011;12(1):279–286. doi: 10.1208/s12249-011-9584-3.
44. Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayurveda Pharm. 2011;2(5):1520–1526.
45. Amber V, Shailendra S, Swarnalatha S. Cyclodextrin based novel drug delivery systems. J Pharm Sci. 2012;62:23–42.


Regular Issue Subscription Review Article
Volume 12
Issue 02
Received 08/05/2025
Accepted 14/06/2025
Published 25/07/2025
Publication Time 78 Days


Login


My IP

PlumX Metrics