Md. Emran Hossain,
- Professor, Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
Abstract
Silage is a pivotal component in modern livestock feeding systems, offering far more than just an alternative to green fodder. This study explores the multifaceted roles of silage in enhancing livestock nutrition, health, and overall farm sustainability. The preservation of crops through fermentation allows for year-round availability of high-quality feed, ensuring consistent nutritional intake, particularly during periods of forage scarcity. Beyond its basic function as a feedstuff, silage improves the digestibility of fiber, enhances feed conversion efficiency, and supports overall animal performance by providing a stable source of energy and protein. The fermentation process also yields beneficial byproducts such as organic acids that contribute to rumen health, improving microbial populations and optimizing nutrient absorption. From an economic perspective, silage reduces the reliance on expensive purchased concentrates, lowers feed costs, and maximizes the use of surplus crops, offering financial stability for farmers. Environmentally, silage production minimizes crop residue waste, reduces the need for field burning, and contributes to lower greenhouse gas emissions by reducing the transportation of fresh feed. The use of silage also offers resilience in the face of climate change by enabling livestock systems to adapt to fluctuating feed availability. Overall, this study underscores the diverse and critical role silage plays in promoting sustainable livestock production through enhanced feed efficiency, animal health, and environmental stewardship
Keywords: Silage, animal health, economic benefits, environmental sustainability, feed efficiency, livestock nutrition, sustainable livestock production
[This article belongs to Research & Reviews : Journal of Agricultural Science and Technology ]
Md. Emran Hossain. Silage Beyond Green Fodder: Nutritional, Health, Economic and Environmental Implications for Sustainable Livestock Production. Research & Reviews : Journal of Agricultural Science and Technology. 2025; 14(02):01-23.
Md. Emran Hossain. Silage Beyond Green Fodder: Nutritional, Health, Economic and Environmental Implications for Sustainable Livestock Production. Research & Reviews : Journal of Agricultural Science and Technology. 2025; 14(02):01-23. Available from: https://journals.stmjournals.com/rrjoast/article=2025/view=229372
References
[1] C. O. Okoye et al., “The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement,” Microbiol. Res., vol. 266, p. 127212, 2023, doi: 10.1016/j.micres.2022.127212.
[2] X. Guo, D. Xu, F. Li, J. Bai, and R. Su, “Current approaches on the roles of lactic acid bacteria in crop silage,” Microb. Biotechnol., vol. 16, no. 1, pp. 67–87, 2023, doi: 10.1111/1751-7915.14184.
[3] L. Zhang et al., “Effect of Sorbic Acid, Ethanol, Molasses, Previously Fermented Juice and Combined Additives on Ensiling Characteristics and Nutritive Value of Napiergrass (Pennisetum purpureum) Silage,” Fermentation, vol. 8, no. 10, p. 528, 2022, doi: 10.3390/fermentation8100528.
[4] M. Zhao et al., “Yield and quality properties of silage maize and their influencing factors in China,” Sci. China Life Sci., vol. 65, no. 8, pp. 1655–1666, 2022, doi: 10.1007/s11427-020-2023-3.
[5] I. García-Chávez et al., “Corn silage, a systematic review of the quality and yield in different regions around the world,” 2022, scielo.org.co. doi: 10.21930/RCTA.VOL23_NUM3_ART:2547.
[6] B. F. Carvalho, G. F. C. Sales, R. F. Schwan, and C. L. S. Ávila, “Criteria for lactic acid bacteria screening to enhance silage quality,” J. Appl. Microbiol., vol. 130, no. 2, pp. 341–355, 2021, doi: 10.1111/jam.14833.
[7] D. Kim, K. D. Lee, and C. Choi, “Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview,” AIMS Agric. Food, vol. 6, no. 1, pp. 216–234, 2021, doi: 10.3934/AGRFOOD.2021014.
[8] J. Bai et al., “Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts,” Microb. Biotechnol., vol. 14, no. 3, pp. 1171–1182, 2021, doi: 10.1111/1751-7915.13785.
[9] X. Zi, M. Li, Y. Chen, R. Lv, H. Zhou, and J. Tang, “Effects of Citric Acid and Lactobacillus plantarum on Silage Quality and Bacterial Diversity of King Grass Silage,” 2021, frontiersin.org. doi: 10.3389/fmicb.2021.631096.
[10] R. E. Muck, L. Kung, and M. Collins, “Silage Production,” Forages, pp. 767–787, 2020, doi: 10.1002/9781119436669.ch42.
[11] C. L. S. Ávila and B. F. Carvalho, “Silage fermentation—updates focusing on the performance of micro-organisms,” J. Appl. Microbiol., vol. 128, no. 4, pp. 966–984, 2020, doi: 10.1111/jam.14450.
[12] Z. Ding, J. Bai, D. Xu, F. Li, Y. Zhang, and X. Guo, “Microbial Community Dynamics and Natural Fermentation Profiles of Ensiled Alpine Grass Elymus nutans Prepared From Different Regions of the Qinghai-Tibetan Plateau,” Front. Microbiol., vol. 11, no. May, pp. 1–15, 2020, doi: 10.3389/fmicb.2020.00855.
[13] R. J. Wilkins, “Silage: A Global Perspective,” Grasslands Dev. Oppor. Perspect., pp. 111–132, 2019, doi: 10.1201/9780429187872-5.
[14] P. Busato, A. Sopegno, N. Pampuro, L. Sartori, and R. Berruto, “Optimisation tool for logistics operations in silage production,” Biosyst. Eng., vol. 180, pp. 146–160, 2019, doi: 10.1016/j.biosystemseng.2019.01.008.
[15] F. Driehuis, J. M. Wilkinson, Y. Jiang, I. Ogunade, and A. T. Adesogan, “Silage review: Animal and human health risks from silage,” J. Dairy Sci., vol. 101, no. 5, pp. 4093–4110, 2018, doi: 10.3168/jds.2017-13836.
[16] R. E. Muck, E. M. G. Nadeau, T. A. McAllister, F. E. Contreras-Govea, M. C. Santos, and L. Kung, “Silage review: Recent advances and future uses of silage additives,” J. Dairy Sci., vol. 101, no. 5, pp. 3980–4000, 2018, doi: 10.3168/jds.2017-13839.
[17] G. Borreani, E. Tabacco, R. J. Schmidt, B. J. Holmes, and R. E. Muck, “Silage review: Factors affecting dry matter and quality losses in silages,” 2018, Elsevier. doi: 10.3168/jds.2017-13837.
[18] T. A. McAllister et al., “Silage review: Using molecular approaches to define the microbial ecology of silage,” 2018, Elsevier. doi: 10.3168/jds.2017-13704.
[19] L. Kung, R. D. Shaver, R. J. Grant, and R. J. Schmidt, “Silage review: Interpretation of chemical, microbial, and organoleptic components of silages,” 2018, Elsevier. doi: 10.3168/jds.2017-13909.
[20] J. M. Wilkinson and M. Rinne, “Highlights of progress in silage conservation and future perspectives,” Grass Forage Sci., vol. 73, no. 1, pp. 40–52, 2018, doi: 10.1111/gfs.12327.
[21] E. Charmley, “Towards improved silage quality – A review,” Can. J. Anim. Sci., vol. 81, no. 2, pp. 157–168, 2001, doi: 10.4141/A00-066.
[22] F. Driehuis and S. J. W. H. O. Elferink, “The impact of the quality of silage on animal health and food safety: A review,” Vet. Q., vol. 22, no. 4, pp. 212–216, 2000, doi: 10.1080/01652176.2000.9695061.
[23] K. K. Bolsen, G. Ashbell, and Z. G. Weinberg, “Silage fermentation and silage additives – Review -,” Asian-Australasian J. Anim. Sci., vol. 9, no. 5, pp. 483–493, 1996, doi: 10.5713/ajas.1996.483.
[24] L. Johnson, J. H. Harrison, C. Hunt, K. Shinners, C. G. Doggett, and D. Sapienza, “Nutritive value of corn silage as affected by maturity and mechanical processing: A contemporary review,” J. Dairy Sci., vol. 82, no. 12, pp. 2813–2825, 1999, doi: 10.3168/jds.S0022-0302(99)75540-2.
[25] K. K. Bolsen, K. J. Moore, W. K. Coblentz, M. K. Siefers, and J. S. White, “Sorghum silage,” Silage Sci. Technol., pp. 609–632, 2015, doi: 10.2134/agronmonogr42.c13.
[26] J. J. Kennelly and Z. G. Weinberg, “Small grain silage,” Silage Sci. Technol., pp. 749–779, 2015, doi: 10.2134/agronmonogr42.c16.
[27] P. Savoie and J. C. Jofriet, “Silage storage,” Silage Sci. Technol., vol. 42, pp. 405–467, 2015, doi: 10.2134/agronmonogr42.c9.
[28] M. M. Gebrehanna, R. J. Gordon, A. Madani, A. C. VanderZaag, and J. D. Wood, “Silage effluent management: A review,” J. Environ. Manage., vol. 143, pp. 113–122, 2014, doi: 10.1016/j.jenvman.2014.04.012.
[29] I. M. Ogunade et al., “Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation,” J. Dairy Sci., vol. 101, no. 5, pp. 4034–4059, 2018, doi: 10.3168/jds.2017-13788.
[30] N. Nishino, Y. Li, C. Wang, and S. Parvin, “Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage,” Lett. Appl. Microbiol., vol. 54, no. 3, pp. 175–181, 2012, doi: 10.1111/j.1472-765X.2011.03191.x.
[31] A. O’Sullivan, K. O’Sullivan, K. Galvin, A. P. Moloney, D. J. Troy, and J. P. Kerry, “Grass silage versus maize silage effects on retail packaged beef quality,” J. Anim. Sci., vol. 80, no. 6, pp. 1556–1563, 2002, doi: 10.2527/2002.8061556x.
[32] P. Kalač, “The effects of silage feeding on some sensory and health attributes of cow’s milk: A review,” Food Chem., vol. 125, no. 2, pp. 307–317, 2011, doi: 10.1016/j.foodchem.2010.08.077.
[33] L. Dunière, J. Sindou, F. Chaucheyras-Durand, I. Chevallier, and D. Thévenot-Sergentet, “Silage processing and strategies to prevent persistence of undesirable microorganisms,” Anim. Feed Sci. Technol., vol. 182, no. 1–4, pp. 1–15, 2013, doi: 10.1016/j.anifeedsci.2013.04.006.
[34] T. F. Bernardes, “Advances in Silage Sealing,” Adv. Silage Prod. Util., vol. 1, no. 3, pp. 53–62, 2016, doi: 10.5772/65445.
[35] T. F. Bernardes et al., “Silage review: Unique challenges of silages made in hot and cold regions,” J. Dairy Sci., vol. 101, no. 5, pp. 4001–4019, 2018, doi: 10.3168/jds.2017-13703.
[36] M. Cattani, N. Guzzo, R. Mantovani, and L. Bailoni, “Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality,” 2017, Springer. doi: 10.1186/s40104-017-0146-8.
[37] P. Huhtanen, M. Rinne, and J. Nousiainen, “Evaluation of concentrate factors affecting silage intake of dairy cows: A development of the relative total diet intake index,” Animal, vol. 2, no. 6, pp. 942–953, 2008, doi: 10.1017/S1751731108001924.
[38] E. M. G. Nadeau, J. R. Russellt, and D. R. Buxton, “Intake, digestibility, and composition of orchardgrass and alfalfa silages treated with cellulase, inoculant, and formic acid fed to lambs,” J. Anim. Sci., vol. 78, no. 11, pp. 2980–2989, 2000, doi: 10.2527/2000.78112980x.
[39] M. A. Bal, J. G. Coors, and R. D. Shaver, “Impact of the Maturity of Corn for Use as Silage in the Diets of Dairy Cows on Intake, Digestion, and Milk Production,” J. Dairy Sci., vol. 80, no. 10, pp. 2497–2503, 1997, doi: 10.3168/jds.S0022-0302(97)76202-7.
[40] E. C. Schwab, R. D. Shaver, K. J. Shinners, J. G. Lauer, and J. G. Coors, “Processing and chop length effects in brown-midrib corn silage on intake, digestion, and milk production by dairy cows,” J. Dairy Sci., vol. 85, no. 3, pp. 613–623, 2002, doi: 10.3168/jds.S0022-0302(02)74115-5.
[41] P. Huhtanen et al., “Prediction of the relative intake potential of grass silage by dairy cows,” Livest. Prod. Sci., vol. 73, no. 2–3, pp. 111–130, 2002, doi: 10.1016/S0301-6226(01)00279-2.
[42] R. W. J. Steen et al., “Factors affecting the intake of grass silage by cattle and prediction of silage intake,” Anim. Sci., vol. 66, no. 1, pp. 115–127, 1998, doi: 10.1017/S1357729800008894.
[43] K. K. Bolsen, C. Lin, B. E. Brent, A. M. Feyerherm, J. E. Urban, and W. R. Aimutis, “Effect of Silage Additives on the Microbial Succession and Fermentation Process of Alfalfa and Corn Silages,” J. Dairy Sci., vol. 75, no. 11, pp. 3066–3083, 1992, doi: 10.3168/jds.S0022-0302(92)78070-9.
[44] J. Gharechahi, Z. A. Kharazian, S. Sarikhan, G. S. Jouzani, M. Aghdasi, and G. Hosseini Salekdeh, “The dynamics of the bacterial communities developed in maize silage,” Microb. Biotechnol., vol. 10, no. 6, pp. 1663–1676, 2017, doi: 10.1111/1751-7915.12751.
[45] A. Broberg, K. Jacobsson, K. Ström, and J. Schnürer, “Metabolite profiles of lactic acid bacteria in grass silage,” Appl. Environ. Microbiol., vol. 73, no. 17, pp. 5547–5552, 2007, doi: 10.1128/AEM.02939-06.
[46] H. Danner, M. Holzer, E. Mayrhuber, and R. Braun, “Acetic acid increases stability of silage under aerobic conditions,” Appl. Environ. Microbiol., vol. 69, no. 1, pp. 562–567, 2003, doi: 10.1128/AEM.69.1.562-567.2003.
[47] R. J. Dewhurst, L. Delaby, A. Moloney, T. Boland, and E. Lewis, “Nutritive value of forage legumes used for grazing and silage,” Irish J. Agric. Food Res., vol. 48, no. 2, pp. 167–187, 2009.
[48] R. J. Grant and L. F. Ferraretto, “Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior,” 2018, Elsevier. doi: 10.3168/jds.2017-13729.
[49] Z. G. Weinberg, R. E. Muck, and P. J. Weimer, “The survival of silage inoculant lactic acid bacteria in rumen fluid,” J. Appl. Microbiol., vol. 94, no. 6, pp. 1066–1071, 2003, doi: 10.1046/j.1365-2672.2003.01942.x.
[50] J. M. Wilkinson, “Silage and animal health,” Nat. Toxins, vol. 7, no. 6, pp. 221–232, 1999, doi: 10.1002/1522-7189(199911/12)7:63.0.CO;2-H.
[51] R. J. Dewhurst, “Milk production from silage: Comparison of grass, legume and maize silages and their mixtures,” Agric. Food Sci., vol. 22, no. 1, pp. 57–69, 2013, doi: 10.23986/afsci.6673.
[52] N. A. Khan, P. Yu, M. Ali, J. W. Cone, and W. H. Hendriks, “Nutritive value of maize silage in relation to dairy cow performance and milk quality,” J. Sci. Food Agric., vol. 95, no. 2, pp. 238–252, 2015, doi: 10.1002/jsfa.6703.
[53] F. P. O’Mara, J. J. Fitzgerald, J. J. Murphy, and M. Rath, “The effect on milk production of replacing grass silage with maize silage in the diet of dairy cows,” Livest. Prod. Sci., vol. 55, no. 1, pp. 79–87, 1998, doi: 10.1016/S0301-6226(98)00115-8.
[54] P. Huhtanen, J. I. Nousiainen, H. Khalili, S. Jaakkola, and T. Heikkilä, “Relationships between silage fermentation characteristics and milk production parameters: Analyses of literature data,” Livest. Prod. Sci., vol. 81, no. 1, pp. 57–73, 2003, doi: 10.1016/S0301-6226(02)00195-1.
[55] B. Bahar, F. J. Monahan, A. P. Moloney, P. O’Kiely, C. M. Scrimgeour, and O. Schmidt, “Alteration of the carbon and nitrogen stable isotope composition of beef by substitution of grass silage with maize silage,” Rapid Commun. Mass Spectrom., vol. 19, no. 14, pp. 1937–1942, 2005, doi: 10.1002/rcm.2007.
[56] J. Tian, Y. Yu, Z. Yu, T. Shao, R. Na, and M. Zhao, “Effects of lactic acid bacteria inoculants and cellulase on fermentation quality and in vitro digestibility of Leymus chinensis silage,” Grassl. Sci., vol. 60, no. 4, pp. 199–205, 2014, doi: 10.1111/grs.12059.
[57] L. CHEN, X. jun YUAN, J. feng LI, S. ran WANG, Z. hao DONG, and T. SHAO, “Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage,” J. Integr. Agric., vol. 16, no. 7, pp. 1592–1600, 2017, doi: 10.1016/S2095-3119(16)61482-X.
[58] A. Behling Neto, R. H. P. dos Reis, L. da S. Cabral, J. G. de Abreu, D. de P. Sousa, and F. G. de Sousa, “Nutritional value of sorghum silage of different purposes,” 2017, SciELO Brasil. doi: 10.1590/1413-70542017413038516.
[59] C. E. Müller, “Silage and haylage for horses,” Grass Forage Sci., vol. 73, no. 4, pp. 815–827, 2018, doi: 10.1111/gfs.12387.
[60] M. Wichern et al., “Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM 1,” Bioresour. Technol., vol. 100, no. 4, pp. 1675–1681, 2009, doi: 10.1016/j.biortech.2008.09.030.
[61] K. Koch, M. Lübken, T. Gehring, M. Wichern, and H. Horn, “Biogas from grass silage – Measurements and modeling with ADM1,” Bioresour. Technol., vol. 101, no. 21, pp. 8158–8165, 2010, doi: 10.1016/j.biortech.2010.06.009.
[62] M. S. Allen, J. G. Coors, and G. W. Roth, “Corn silage,” Silage Sci. Technol., pp. 547–608, 2015, doi: 10.2134/agronmonogr42.c12.
[63] L. Kung, M. R. Stokes, and C. J. Lin, “Silage additives,” Silage Sci. Technol., pp. 305–360, 2015, doi: 10.2134/agronmonogr42.c7.
| Volume | 14 |
| Issue | 02 |
| Received | 27/07/2025 |
| Accepted | 22/08/2025 |
| Published | 03/09/2025 |
| Publication Time | 38 Days |
Login
PlumX Metrics

