AN EXPERIMENTAL INVESTIGATION ON SURFACE ROUGHNESS OF LASER BEAM MACHINING OF ALUMINIUM ALLOY

Year : 2024 | Volume :12 | Issue : 06 | Page : 82-104
By

Prashant P. Kharche,

Vijay H. Patil,

  1. Research Scholar, Department of Mechanical Engineering, GF’s Godavari College of Engineering, Jalgaon, Maharashtra, India
  2. Principal, Department of Mechanical Engineering, GF’s Godavari College of Engineering, Jalgaon, Maharashtra, India

Abstract

Laser beam machining (LBM) is a cutting-edge technique widely utilized for precision machining of advanced materials. This experimental investigation focuses on the surface roughness of aluminum alloy (Al 6061) during LBM. The study systematically examines the impact of process parameters such as laser power, cutting speed, and gas pressure on surface roughness (Ra). The significance of surface roughness in determining the quality and functionality of machined components is emphasized. The experimental setup employs the AMADA LCG3015AJ laser beam machining system with a 6000W fiber laser, ensuring precision and control over various parameters. A factorial design matrix, incorporating factors like laser power and scanning speed, is strategically employed. Response Surface Methodology (RSM) aids in constructing a predictive model for surface roughness, facilitating optimal conditions for desired finishes. The experimental runs, conducted at M/s Anand Lasers, Pune, India, involve the systematic alteration of parameters, and surface roughness is evaluated using advanced metrology methods. Statistical analysis, including ANOVA, unveils significant contributors to surface roughness, guiding process optimization. The final expression incorporating coded factors provides a comprehensive understanding of the relationship between process parameters and surface roughness. The results showcase the intricate dynamics of LBM on aluminum alloy surfaces. The study contributes valuable insights for optimizing machining processes, enhancing surface quality, and advancing precision manufacturing.

Keywords: Surface roughness, aluminium alloy, laser beam machining, Anova, alloy, thermal analysis, characterization, processing and manufacturing, properties and performance, mechanical properties.

[This article belongs to Journal of Polymer and Composites (jopc)]

How to cite this article:
Prashant P. Kharche, Vijay H. Patil. AN EXPERIMENTAL INVESTIGATION ON SURFACE ROUGHNESS OF LASER BEAM MACHINING OF ALUMINIUM ALLOY. Journal of Polymer and Composites. 2024; 12(06):82-104.
How to cite this URL:
Prashant P. Kharche, Vijay H. Patil. AN EXPERIMENTAL INVESTIGATION ON SURFACE ROUGHNESS OF LASER BEAM MACHINING OF ALUMINIUM ALLOY. Journal of Polymer and Composites. 2024; 12(06):82-104. Available from: https://journals.stmjournals.com/jopc/article=2024/view=176076

Browse Figures

References

  1. Mangesh V. Pantawane, Sameehan S. Joshi, and Narendra B. Dahotre. In: Kevin Anderson, John Weritz, and J. Gilbert Kaufman, editors. Laser Beam Machining of Aluminum and Aluminum Alloys. Volume 2A. ASM Handbook Aluminum Science and Technology; 2018.
  2. K. Dubey and V. Yadava. Laser beam machining—A review. Int J Mach Tools Manuf, vol. 48, no. 6, pp. 609–628, May 2008, doi: 10.1016/j.ijmachtools.2007.10.017.
  3. K. Chaudhary, A. K. Pandey, and A. K. Dubey. Computer Aided Taguchi-Fuzzy Multi-Optimization of laser cutting process. Journal of Intelligent & Fuzzy Systems, vol. 26, no. 2, pp. 801–810, 2014, doi: 10.3233/IFS-130770.
  4. Leone, S. Genna, A. Caggiano, V. Tagliaferri, and R. Molitierno. Influence of process parameters on kerf geometry and surface roughness in Nd:YAG laser cutting of Al 6061T6 alloy sheet. The International Journal of Advanced Manufacturing Technology, vol. 87, no. 9–12, pp. 2745–2762, Dec. 2016, doi: 10.1007/s00170-016-8667-4.
  5. Khed and N. Kamble. Experimental investigation and analysis of process parameters in Laser beam machining of aluminium alloy 8011. International Journal of Engineering Research & Technology , vol. 4, no. 9, pp. 326–333, Sep. 2015.
  6. Manjoth, R. Keshavamurthy, and G. S. P. Kumar. Optimization and Analysis of Laser Beam Machining Parameters for Al7075-TiB2 In-situ Composite. IOP Conf Ser Mater Sci Eng, vol. 149, p. 012013, Sep. 2016, doi: 10.1088/1757-899X/149/1/012013.
  7. Leone, S. Genna, A. Caggiano, V. Tagliaferri, and R. Molitierno. An Investigation on Nd:YAG Laser Cutting of Al 6061 T6 Alloy Sheet. Procedia CIRP, vol. 28, pp. 64–69, 2015, doi: 10.1016/j.procir.2015.04.012.
  8. Leone, S. Genna, A. Caggiano, V. Tagliaferri, and R. Molitierno. Influence of process parameters on kerf geometry and surface roughness in Nd:YAG laser cutting of Al 6061T6 alloy sheet. The International Journal of Advanced Manufacturing Technology, vol. 87, no. 9–12, pp. 2745–2762, Dec. 2016, doi: 10.1007/s00170-016-8667-4.
  9. D. Shinde and P. R. Kubade. Investigation of Effect of Laser Beam Machining (LBM) Process Parameters on Performance Characteristics of Stainless Steel (SS304). International Journal of Engineering Research and Technology, vol. 10, no. 1, 2017.
  10. K. M and K. Gupta. Experimental evaluation of surface quality characteristics in laser machining of nickel-based superalloy. Optik (Stuttg), vol. 196, p. 163199, Nov. 2019, doi: 10.1016/j.ijleo.2019.163199.
  11. Manoj Samson, R. Ranjith, R. Nirmal, and T. Geethapriyan. Performance analysis of process variables on laser beam machining of inconel-718 alloy. IOP Conf Ser Mater Sci Eng, vol. 912, no. 3, p. 032036, Aug. 2020, doi: 10.1088/1757-899X/912/3/032036.
  12. Lopatková, J. Bárta, M. Marônek, F. Šugra, M. Kritikos, and S. Marić. The Influence of Surface Roughness on Laser Beam Welding of Aluminium Alloys. Tehnicki vjesnik – Technical Gazette, vol. 28, no. 3, Jun. 2021, doi: 10.17559/TV-20201102100726.
  13. C. Cagan, B. Venkatesh, and B. B. Buldum. Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Mater Today Proc, vol. 27, pp. 1122–1126, 2020, doi: 10.1016/j.matpr.2020.01.547.
  14. C. Manjunath Patel, D. Lokare, G. R. Chate, M. B. Parappagoudar, R. Nikhil, and K. Gupta. Analysis and optimization of surface quality while machining high strength aluminium alloy. Measurement, vol. 152, p. 107337, Feb. 2020, doi: 10.1016/j.measurement.2019.107337.
  15. Dev, S. Tandon, P. Kumar, and A. Dutt. Effect of Coating and Polishing of Cutting Tool on Machined Surface Quality in Dry Machining of Aluminium Alloy. Def Sci J, vol. 70, no. 3, pp. 299–305, Apr. 2020, doi: 10.14429/dsj.70.14831.
  16. Struzikiewicz and A. Sioma. Evaluation of Surface Roughness and Defect Formation after The Machining of Sintered Aluminum Alloy AlSi10Mg. Materials, vol. 13, no. 7, p. 1662, Apr. 2020, doi: 10.3390/ma13071662.
  17. Kalantari, F. Jafarian, and M. M. Fallah. Comparative investigation of surface integrity in laser assisted and conventional machining of Ti-6Al-4 V alloy. J Manuf Process, vol. 62, pp. 90–98, Feb. 2021, doi: 10.1016/j.jmapro.2020.11.032.
  18. Muthuramalingam et al. Influence of process parameters on dimensional accuracy of machined Titanium (Ti-6Al-4V) alloy in Laser Beam Machining Process. Opt Laser Technol, vol. 132, p. 106494, Dec. 2020, doi: 10.1016/j.optlastec.2020.106494.
  19. Sroka, E. Jonda, and W. Pakieła. Laser Surface Modification of Aluminium Alloy AlMg9 with B4C Powder. Materials, vol. 13, no. 2, p. 402, Jan. 2020, doi: 10.3390/ma13020402.
  20. Liu, G. Ma, D. Liu, J. Yu, F. Niu, and D. Wu. Microstructure and mechanical properties of aluminum alloy prepared by laser-arc hybrid additive manufacturing. J Laser Appl, vol. 32, no. 2, May 2020, doi: 10.2351/7.0000082.
  21. Ahmadi Khatir, M. Hossein Sadeghi, and S. Akar. Investigation of surface roughness in laser-assisted hard turning of AISI 4340. Mater Today Proc, vol. 38, pp. 3085–3090, 2021, doi: 10.1016/j.matpr.2020.09.480.
  22. Ni et al. Effects of machining surface and laser beam scanning strategy on machinability of selective laser melted Ti6Al4V alloy in milling. Mater Des, vol. 194, p. 108880, Sep. 2020, doi: 10.1016/j.matdes.2020.108880.
  23. Sun et al. Experimental Investigation on Machinability of Aluminum Alloy during Dry Micro Cutting Process Using Helical Micro End Mills with Micro Textures. Materials, vol. 13, no. 20, p. 4664, Oct. 2020, doi: 10.3390/ma13204664.
  24. Dhanalakshmi and T. Rameshbabu. Comparative study of parametric influence on wet and dry machining of LM 25 aluminium alloy. Mater Today Proc, vol. 39, pp. 48–53, 2021, doi: 10.1016/j.matpr.2020.06.101.
  25. Hofele, J. Schanz, A. Roth, D. K. Harrison, A. K. M. De Silva, and H. Riegel. Process parameter dependencies of continuous and pulsed laser modes on surface polishing of additive manufactured aluminium AlSi10Mg parts. Materwiss Werksttech, vol. 52, no. 4, pp. 409–432, Apr. 2021, doi: 10.1002/mawe.202000335.
  26. Chen, G. Mi, X. Zhang, and C. Wang. Comparative investigation on single laser beam and dual laser beam for lap welding of aluminum alloy. J Laser Appl, vol. 32, no. 4, Nov. 2020, doi: 10.2351/7.0000141.
  27. Cavusoglu. The 3D surface morphological investigation of laser cutting process of 2024-T3 aluminum alloy sheet. Optik (Stuttg), vol. 238, p. 166739, Jul. 2021, doi: 10.1016/j.ijleo.2021.166739.
  28. Nandy, S. Sahoo, H. Sarangi, and R. K. Sabat. Evaluation of structural and mechanical properties of high strength aluminum alloy components fabricated using laser powder bed fusion process. J Laser Appl, vol. 33, no. 3, Aug. 2021, doi: 10.2351/7.0000169.
  29. Pan, J. Ni, L. He, Z. Cui, and K. Feng. Influence of micro-structured milling cutter on the milling load and surface roughness of 6061 aluminum alloy. The International Journal of Advanced Manufacturing Technology, vol. 110, no. 11–12, pp. 3201–3208, Oct. 2020, doi: 10.1007/s00170-020-06080-5.
  30. Leone, S. Genna, and F. Tagliaferri. Multiobjective optimisation of nanosecond fiber laser milling of 2024 T3 aluminium alloy. J Manuf Process, vol. 57, pp. 288–301, Sep. 2020, doi: 10.1016/j.jmapro.2020.06.026.
  31. Pakieła, T. Tanski, Z. Brytan, G. Chladek, and K. Pakieła. The impact of laser surface treatment on the microstructure, wear resistance and hardness of the AlMg5 aluminum alloy. Applied Physics A, vol. 126, no. 3, p. 231, Mar. 2020, doi: 10.1007/s00339-020-3350-x.
  32. Bunaziv, O. M. Akselsen, X. Ren, B. Nyhus, and M. Eriksson. Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys. Metals (Basel), vol. 11, no. 8, p. 1150, Jul. 2021, doi: 10.3390/met11081150.
  33. Bhaduri et al. Pulsed laser polishing of selective laser melted aluminium alloy parts. Appl Surf Sci, vol. 558, p. 149887, Aug. 2021, doi: 10.1016/j.apsusc.2021.149887.
  34. Sathish, P. Sevvel, P. Sudharsan, and V. Vijayan. Investigation and optimization of laser welding process parameters for AA7068 aluminium alloy butt joint. Mater Today Proc, vol. 37, pp. 1672–1677, 2021, doi: 10.1016/j.matpr.2020.07.196.

Regular Issue Subscription Original Research
Volume 12
Issue 06
Received 21/06/2024
Accepted 09/08/2024
Published 20/09/2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.