Juan Manuel Sánchez- Yañez,
Gabriel Gallegos-Morales,
María Elvira Murillo-Martinez,
Luis Jesús Galán,
- Research Professor, Environmental Microbiology, Chemical Biological Research Institute , Michoacan University of San Nicolás de Hidalgo , Morelia, Michoacán, México
- Research Professor, Parasitology Department, Antonio Narro Autonomous Agrarian University,, Buena Vista, Coah, México.
- Research Professor, Industrial Microbiology y del Suelo, Faculty of Ciencias Biológy, Autonomous University of Nuevo Leon, San Nicolás de los Garza, N. L., México
- Research Professor, Industrial Microbiology y del Suelo, Faculty of Ciencias Biológy, Autonomous University of Nuevo Leon, San Nicolás de los Garza, N. L., México
Abstract
The microbial synthesis of ethanol is conventionally by yeast, however the bacterial genus Zymomonas has an interesting capacity to synthesize ethanol, currently it is an ecological alternative, for the global demand for fuels other than oil. The objectives of this work were: i) to isolate Zymomonas that synthesize ethanol from natural sources ii) to select Zymomonas natural amounts for ethanol synthesis. The results show a wide distribution of Zymomonas in natural sources and limited natural ability to generate ethanol. It is reaffirmed that this genus is an alternative for the solution of the world energy crisis, based in to improve its natural ability for ethanol synthesized by biological means does not cause environmental pollution.
Keywords: Non-fossil fuel, Natural selection, Vegetable Juice, Bacterial fermentation, Yeast
[This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)]
References
1. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q. 2012. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl Microbiol Biotechnol. 95(1):189–99.
2. Dong H, Bao J.2010. Metabolism: biofuel via biodetoxification. Nat Chem Biol. 6(5):316.
3. Qin B.H, Yang Y, Duan G, Yang S, Xin F, Zhao C, Shao H, Wang Y, Zhu Q, et al. 2019. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol Biofuels. 12(1):10.
4. Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. 2016 Zymomonas mobilis as a model system for production of biofuelsand biochemicals. Microb Biotechnol.;9(6):699–717.
5. He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K. 2014 Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels.;7(1):101.
6. Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao, J, et al. 2018. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng. 50:57–73.
7. Lü F, Liu Y, Shao L, He P. 2019. Powdered biochar doubled microbial growth in anaerobic digestion of oil. Appl Energy. 247:605–14.
8. Garrity GM ed lit: Brenner DJ ed lit: Krieg NR ed lit: Staley J ed lit 2005. Bergey´s manual systematic bacteriology. New York Springer 2 nd ed. USA
9. Coton, M., Laplace, J.M. and Coton, E. 2005 Zymomonas mobilis subspecies identification by amplified ribosomal DNA restriction analysis. Lett Appl Microbiol 40: 152 157.
10. Walpole, E.R.; Myers, R.H.; Myers, S.L. 2007. Experimentos con un solo factor: Generales. In Probabilidad y Estadística Para Ingeniería y Ciencias, 9th ed.; López, B.G., Hernández, C.F., Eds.; PEARSON: Naucalpan de Juárez, Estado de Mexico, Mexico, Volume 1, pp: 507–560.
11. White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In: PCR protocols. A guide to methods and applications (Eds: Innis, M.A., Gelfand, D.H., Sninsky, J. J., White, T.J.) Academic Press, San Diego, 315-322. USA
12. Novak J, Moore E, Spokas K, Hall K, Williams A. 2019. Future biochar research directions. Biochar from biomass and waste. Amsterdam: Elsevier; p. 423–35. Neederlands
13. Kyriakou M, Chatziiona VK, Costa CN, Kallis M, Koutsokeras L, Constantinides G, Koutinas M. 2019. Biowaste‑based biochar: a new strategy for fermentative bioethanol overproduction via whole‑cell immobilization. Appl Energy. 242:480–91.
14. Tan F‑R, Dai L‑C, Wu B, Qin H, Shui Z‑X, Wang J‑L, Zhu Q‑L, Hu Q‑C, Ruan Z‑Y, He M‑X. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biotechnol. 99(12):5363–71.
15. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 267:240–3.
16. Zhao C, Sinumvayo JP, Zhanga Y, Li Y. 2019. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng 55:111–95
17. Mohagheghi A, Dowe N, Schell D, Chou Y-C, Eddy C, Zhang M. 2014. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett. 26:321–5.
18. Agrawal M, Mao Z, Chen RR. 2011. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng. 108:777–85.
19. Tanaka H, Ishikawa H, Osuga K, Takagi Y. 1990. Fermentative ability of Zymomonas mobilis under various oxygen supply conditions in batch culture. J Ferment Bioeng. 69:234–9.
20. Ishikawa H, Nobayashi H, Tanaka H. 1990. Mechanism of fermentation perfor mance of Zymomonas mobilis under oxygen supply in batch culture. J Ferment Bioeng. 170:34–40.
21. Amutha R, Gunasekaran P. 2011. Production of ethanol from liquefied cassava starch using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J Biosci Bioeng 92:560–564.
22. Kong W, Meldgin DR, Collins JJ, Lu T. 2018. Designing microbial consortia with defined social interactions. Nat Chem Biol14:821–9.
23. Gao C-H, Cao H, Cai P, Sørensen SJ. 2021. The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity. ISME J. 15:29–40.
Journal of Modern Chemistry & Chemical Technology
Volume | 15 |
Issue | 01 |
Received | November 10, 2023 |
Accepted | January 22, 2024 |
Published | February 12, 2024 |