Understanding Side-wind Dynamics and Deciphering Ringsail Parachute Drift

Year : 2024 | Volume :15 | Issue : 01 | Page : 1-12
By

Kum Gwon Choe,

Yu Mi Sin,

Sol Song Pak,

Ji Yong Ri,

Jong Gil Pak,

  1. Faculty Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea North Korea Korea
  2. Faculty Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea North Korea Korea
  3. Faculty Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea North Korea Korea
  4. Faculty Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea North Korea Korea
  5. Faculty Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea North Korea Korea

Abstract

The geometric complication caused by the “rings” and “sails” used to make the parachutist’s canopy provides a considerable computationally problem, which is the focus of this paper’s fluid–structure interaction (FSI) modeling of ringsail parachutes. Based on the sustained space-time FSI (SSTFSI) method, we have developed an FSI simulation of ringsail jumping devices. The FSI Geometric Smoothing Technique and the Homogenized Modeling of Geometric Porosity represent a pair of the above interface projection methods. We outline our use of one of these supplemental methods to ringsail parachutes in FSI simulations. We consider a single primary parachute in the simulations we give here, which carries one-third of the overall vehicle’s entire burden. Researchers show the findings from FSI simulation of unloading, that involve drifting under cross wind influence and, as a specific instance, losing warmth shielding.

Keywords: Ringsail parachute, Orion space vehicle, fluid–structure interaction, offloading, drifting

[This article belongs to Journal of Experimental & Applied Mechanics(joeam)]

How to cite this article: Kum Gwon Choe, Yu Mi Sin, Sol Song Pak, Ji Yong Ri, Jong Gil Pak. Understanding Side-wind Dynamics and Deciphering Ringsail Parachute Drift. Journal of Experimental & Applied Mechanics. 2024; 15(01):1-12.
How to cite this URL: Kum Gwon Choe, Yu Mi Sin, Sol Song Pak, Ji Yong Ri, Jong Gil Pak. Understanding Side-wind Dynamics and Deciphering Ringsail Parachute Drift. Journal of Experimental & Applied Mechanics. 2024; 15(01):1-12. Available from: https://journals.stmjournals.com/joeam/article=2024/view=150705

References

  1. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27–36Comput Mech (2008) 43:133–142,141
  2. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Meth Appl Mech Eng 119:157–177
  3. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comp Meth Appl Mech Eng 112:253–282
  4. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—Fluid–structure interactions. Int J Numer Meth Fluids 21:933–953
  5. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Computat Mech 23:130–143
  6. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comp Meth Appl Mech Eng 190:321–332
  7. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M(2000) Parachute fluid–structure interactions: 3-D computation. Comp Meth Appl Mech Eng 190:373–386
  8. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comp Meth Appl Mech Eng 191:717–726
  9. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comp Meth Appl Mech Eng 190:3009–3019
  10. Tezduyar TE, Sathe S, Keedy R, Stein K (2004) Space–time techniques for finite element computation of flows with moving boundaries and interfaces. In: Gallegos S, Herrera I, Botello S, Zarate F, Ayala G (eds) Proceedings of the III international congress on numerical methods in engineering and applied science, CD-ROM, Monterrey, Mexico
  11. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224–1231 (in Japanese)
  12. van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27:599–621
  13. Michler C, van Brummelen EH, de Borst R (2005) An interface Newton–Krylov solver for fluid–structure interaction. Int J Numer Meth Fluids 47:1189–1195
  14. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid–structure interaction in blood flow on geometries based on medical images. Comp Struc 83:155–165
  15. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions.Comp Meth Appl Mech Eng 195:2002–2027
  16. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comp Meth Appl Mech Eng 195:5743–5753
  17. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation. Comp Meth Appl Mech Eng 195:1885–1895
  18. Tezduyar TE, Sathe S, Stein K, Aureli L (2006) Modeling of fluid–structure interactions with the space–time techniques. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering. Springer, Heidelberg, pp 50–81
  19. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482–490
  20. Dettmer W, Peric D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comp Meth Appl Mech Eng 195:5754–5779
  21. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322
  22. Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416
  23. Kuttler U, Forster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains. Comput Mech 38:417–429
  24. Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O(2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds)Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering. Springer, Heidelberg, pp 82–100
  25. Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, vol 53. Lecture notes in computational science and engineering, Springer, Heidelberg,pp 336–355
  26. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE(2007) Influence of wall elasticity in patient-specific hemodynamic Comp Fluids 36:160–168
  27. Masud A, Bhanabhagvanwala M, Khurram RA (2007) An adaptive mesh rezoning scheme for moving boundary flows and fluid–structure interaction. Comp Fluids 36:77–91
  28. Sawada T, Hisada T (2007) Fuid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comp Fluids 36:136–146
  29. Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comp Fluids 36:169–183
  30. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) A fully-integrated approach to fluid–structure interaction. Comput Mech (in preparation)
  31. Stein KR, Benney RJ, Kalro V, Johnson AA, Tezduyar TE (1997) Parallel computation of parachute fluid–structure interactions. In: Proceedings of AIAA 14th aerodynamic decelerator systems technology conference, AIAA paper 97-1505, San Francisco
  32. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44
  33. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comp Meth Appl Mech Eng 94:339–351
  34. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comp Meth Appl Mech Eng 94:353–371
  35. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575
  36. Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD-vol 34.ASME, New York, pp 19–35
  37. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp Meth Appl Mech Eng 32:199–259
  38. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comp Meth Appl MechEng 95:221–242 123 142 Comput Mech (2008) 43:133–142
  39. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Meth Appl Mech Eng 59:85–99
  40. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods space–time formulations, iterative strategies and massively parallel In: New methods in transient analysis, PVP-vol246/AMD-vol 143, ASME, New York, pp l7–24
  41. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119:73–94
  42. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Meth Fluids24:1321–1340
  43. Tezduyar T (2001) Finite element interface-tracking and interface capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas–liquid and phase-change flows (CD-ROM), ASME paper IMECE2001/HTD-24206,ASME, New York
  44. Tezduyar TE (2003) Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows. In: Hafez MM (ed) Numerical simulations of incompressible flows. World Scientific, New Jersey, pp 221–239
  45. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63
  46. Tezduyar TE, Sathe S, Senga M, Aureli L, Stein K, Griffin B (2005) Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques. In: Proceedings of the 10th international conference on numerical methods in continuum mechanics (CD-ROM), Zilina, Slovakia
  47. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900
  48. Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Meth Fluids 15:1073–1118
  49. Stein K, Benney R, Tezduyar T, Kalro V, Leonard J, Accorsi M (1999) 3-D computation of parachute fluid–structure interactions: performance and control. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference, AIAA paper 99-1714, Toulouse, France
  50. Stein K, Benney R, Tezduyar T, Kalro V, Potvin J, Bretl T (1999) Fluid–structure interaction simulation of a cross parachute: comparison of numerical predictions with wind tunnel data. In: Proceedings of CEAS/AIAA 15th aerodynamic decelerator systems technology conference, AIAA Paper 99-1725, Toulouse, France
  51. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comp Meth Appl Mech Eng 191:673–687
  52. Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircraft 38:800–808
  53. Tezduyar TE (2003) Stabilized finite element methods for flows with moving boundaries and interfaces. HERMIS Int J Comp Math Appl 4:63–88
  54. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3. Fluids, Chap 17. Wiley, New York
  55. Tezduyar TE (2004) Moving boundaries and interfaces. In: Franca LP, Tezduyar TE, Masud A (eds) Finite element methods: 1970’s and beyond, CIMNE, Barcelona, pp 205–220
  56. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comp Fluids 36:207–223
  57. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid Int J Numer Meth Fluids 54:901–922
  58. Tezduyar TE, Pausewang J, Sathe S (2007) FSI modeling of sails. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007, CIMNE, Barcelona
  59. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Meth Fluids. DOI:10. 1002/fld.1633
  60. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Crabtree J, Christopher J (2007) Air–fabric interaction modeling with the stabilized space–time FSI technique. In: Proceedings of the third Asian-Pacific congress on computational mechanics (CD-ROM), Kyoto
  61. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech. doi:10.1007/s00466-008-0261-7
  62. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869
  63. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

Regular Issue Subscription Review Article
Volume 15
Issue 01
Received April 23, 2024
Accepted May 25, 2024
Published June 14, 2024