[{“box”:0,”content”:”[if 992 equals=”Open Access”]
Open Access
n
[/if 992]n
n
n
n
n
- n t

n
Nisarg Kishorchandra Atkotiya, Ramani Jaydeep Ramniklal, Jayesh N. Zalavadia
[/foreach]
n
n
n[if 2099 not_equal=”Yes”]n
- [foreach 286] [if 1175 not_equal=””]n t
- Research Scholar, Assistant Professor, Assistant Professor, Department of Statistics, Saurashtra University, Rajkot, CS & IT Department, Atmiya University, Rajkot, Department of Comm. & Mngt., Atmiya University, Rajkot, Gujrat, Gujrat, Gujrat, India, India, India
n[/if 1175][/foreach]
[/if 2099][if 2099 equals=”Yes”][/if 2099]nn
Abstract
nNow a days whole over the world most of the people suffering from different types of diseases or obesity. Because of bad food habits or eating food without knowing the calorie and other sources from the foods. Precise techniques for gauging food and energy consumption play a vital role in addressing obesity. Offering users or patients accessible and smart solutions to assess their food intake and gather dietary information constitutes valuable insights for long-term prevention and effective treatment programs. So Innovative health applications that encourage informed food choices and customized nutrition tracking have been developed resulting from the increased prevalence of obesity and diseases linked to lifestyle. A successful method for offering predictions of healthy foods is the health application that uses cutting-edge image recognition technology, “Convolutional Neural Networks (CNN)”, to deliver real-time nutrition information based on food photographs. The application’s CNN system provides accurate food recognition, doing away with the need for laborious database searches or human data entry. Users receive thorough nutritional information, including information on the macronutrient breakdown, micronutrient content, and probable allergies, enabling them to make quick, health-conscious selections.
n
Keywords: Convolutional Neural Network (CNN), Health application, K Nearest Neighbour Model, VGG16 Model, Food Recognition
n[if 424 equals=”Regular Issue”][This article belongs to Journal of Computer Technology & Applications(jocta)]
n
n
n
n
n
n
n[if 992 equals=”Open Access”] Full Text PDF Download[else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(‘Full Text PDF‘);n }nelse if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }nelse if (fieldValue == ‘jocta’) { document.write(‘Full Text PDF‘); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n
Browse Figures
n
n
n[/if 379]n
References
n[if 1104 equals=””]n
- Almaghrabi R, Villalobos G, Pouladzadeh P, Shirmohammadi S. A novel method for measuring nutrition intake based on food image. In2012 IEEE international instrumentation and measurement technology conference proceedings 2012 May 13 (pp. 366-370). IEEE.
- Pouladzadeh P, Shirmohammadi S, Yassine A. Using graph cut segmentation for food calorie measurement. In2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA) 2014 Jun 11 (pp. 1-6). IEEE.
- Pouladzadeh P, Kuhad P, Peddi SV, Yassine A, Shirmohammadi S. Mobile cloud based food calorie measurement. In2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) 2014 Jul 14 (pp. 1-6). IEEE.
- Peddi SV, Yassine A, Shirmohammadi S. Cloud based virtualization for a calorie measurement e-health mobile application. In2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) 2015 Jun 29 (pp. 1-6). IEEE.
- Pouladzadeh P, Shirmohammadi S, Yassine A. You are what you eat: So measure what you eat!. IEEE Instrumentation & Measurement Magazine. 2016 Jan 21;19(1):9-15.
- Kasyap VB, Jayapandian N. Food calorie estimation using convolutional neural network. In2021 3rd International Conference on Signal Processing and Communication (ICPSC) 2021 May 13 (pp. 666-670). IEEE.
- Liang Y, Li J. Deep learning-based food calorie estimation method in dietary assessment. arXiv preprint arXiv:1706.04062. 2017 Jun 10.
- Chokr M, Elbassuoni S. Calories prediction from food images. InProceedings of the AAAI Conference on Artificial Intelligence 2017 Feb 11 (Vol. 31, No. 2, pp. 4664-4669).
- OPENCV D. Interactive foreground extraction using grabcut algorithm.
- Boykov YY, Jolly MP. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. InProceedings eighth IEEE international conference on computer vision. ICCV 2001 2001 Jul 7 (Vol. 1, pp. 105-112). IEEE.
- https://grabcut.weebly.com/background–algorithm.html
- Miyazaki T, De Silva GC, Aizawa K. Image-based calorie content estimation for dietary assessment. In2011 IEEE International Symposium on Multimedia 2011 Dec 5 (pp. 363-368). IEEE.
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
nn
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n

n
n
n
n
n
| Volume | 15 | |
| [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] | 01 | |
| Received | February 26, 2024 | |
| Accepted | March 18, 2024 | |
| Published | April 5, 2024 |
n
n
n
n
n
nn function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]
