Application of Resource Allocation Similarity Based Link Prediction in Wireless Networks

[{“box”:0,”content”:”

n

Year : September 25, 2023 | Volume : 01 | Issue : 02 | Page : –

n

n

n

n

n

n

By

n

    n t

    [foreach 286]n

    n

    Nirmaljit Singh, Dr. Ikvinderpal Singh

  1. [/foreach]

    n

n

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Assistant Professor, Department of Computer Science and Engineering, Sant Baba Bhag Singh University, Department of Computer Science and Applications, Trai Shatabdi GGS Khalsa College, Punjab, Punjab, India, India
  2. n[/if 1175][/foreach]

n

n

Abstract

nLink prediction in wireless networks plays a crucial role in predicting missing connections within multiplex networks. This study focuses on the utilization of similarity-based link prediction methods in wireless networks. These methods assume that the likelihood of linkage between nodes is determined by their similarity, based on shared features. Several similarity measures, such as Common Neighbors (CN), Preferential Attachment (PA), Adamic-Adar (AA), and Resource Allocation (RA) indices, are commonly employed to assess the structural similarity between nodes. These measures are favored because they offer a balance between computational efficiency and satisfactory predictive capabilities. Furthermore, the use of global similarity indices, such as the Katz index based on path length, incorporates information about the entire network structure and provides more accurate predictions. By employing these similarity- based methods, researchers and practitioners can gain valuable insights into the linkage patterns within wireless networks. This approach has been applied and evaluated in various multiplex networks, including social, biological, and technological networks. Commonly utilized for assessing the effectiveness of similarity-based link prediction methods are evaluation metrics such as the Area under the Receiver Operating Characteristic Curve (AUC) and precision.

n

n

n

Keywords: link prediction, complex networks, Jaccard Index, preferential attachment, recommendation systems

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Wireless Security and Networks(ijwsn)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Wireless Security and Networks(ijwsn)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Nirmaljit Singh, Dr. Ikvinderpal Singh Application of Resource Allocation Similarity Based Link Prediction in Wireless Networks ijwsn September 25, 2023; 01:-

n

How to cite this URL: Nirmaljit Singh, Dr. Ikvinderpal Singh Application of Resource Allocation Similarity Based Link Prediction in Wireless Networks ijwsn September 25, 2023 {cited September 25, 2023};01:-. Available from: https://journals.stmjournals.com/ijwsn/article=September 25, 2023/view=0/

nn


nn

Full Text

n[if 992 equals=”Open Access”] [else] nvar fieldValue = “[user_role]”;nif (fieldValue == ‘indexingbodies’) {n document.write(”);n }nelse if (fieldValue == ‘administrator’) { document.write(”); }nelse if (fieldValue == ‘ijwsn’) { document.write(”); }n else { document.write(‘ ‘); }n [/if 992] [if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

nn

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

1. Waheed N, He X, Ikram M, Usman M, Hashmi SS, Usman M. Security and privacy in IoT using machine learning and blockchain: Threats and countermeasures. ACM Computing Surveys (CSUR). 2020 Dec 6;53(6):1-37.
2. Lu W, Si P, Huang G, Peng H, Hu S, Gao Y. Interference reducing and resource allocation in UAV- powered wireless communication system. In2020 International Wireless Communications and Mobile Computing (IWCMC) 2020 Jun 15 (pp. 220-224). IEEE.
3. Chhea K, Ron D, Lee JR. Weighted De-Synchronization Based Resource Allocation in Wireless Networks. CMC-COMPUTERS MATERIALS & CONTINUA. 2023 Jan 1;75(1):1815-26.

4. Hamid AK, Al-Wesabi FN, Nemri N, Zahary A, Khan I. An Optimized Algorithm for Resource Allocation for D2D in Heterogeneous Networks. Computers, Materials & Continua. 2022 Feb 1;70(2).
5. Zhang S, Liu J, Guo H, Qi M, Kato N. Envisioning device-to-device communications in 6G. IEEE Network. 2020 Mar 27;34(3):86-91.

6. Rodríguez E, Otero B, Canal R. A survey of machines and deep learning methods for privacy protection in the Internet of Things. Sensors. 2023 Jan 21;23(3):1252.
7. Wang Y, Ming L. Global Path Link Prediction Method Based on Improved Resource Allocation. InJournal of Physics: Conference Series 2023 Jun 1 (Vol. 2522, No. 1, p. 012023). IOP Publishing.
8. Yan D, Ng BK, Ke W, Lam CT. Deep Reinforcement Learning Based Resource Allocation for Network Slicing with Massive MIMO. IEEE Access. 2023 Jul 19.
9. Zhang E, Yin S, Zhang Z, Qi Y, Lu L, Li Y, Liang K. Price-Based Resource Allocation in an UAV- Based Cognitive Wireless Powered Networks. Wireless Communications and Mobile Computing.2023 Feb 22;2023.
10. Li L, Zhao Y, Wang J, Zhang C. Wireless Traffic Prediction Based on a Gradient Similarity Federated Aggregation Algorithm. Applied Sciences. 2023 Mar 22;13(6):4036.
11. Bao B, Yang H, Yao Q, Guan L, Zhang J, Cheriet M. Resource allocation with edge-cloud collaborative traffic prediction in integrated radio and optical networks. IEEE Access. 2023 Jan 16;11:7067-77.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

Regular Issue Subscription Review Article

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 01
Issue 02
Received September 14, 2023
Accepted September 22, 2023
Published September 25, 2023

n

n

n

[if 1190 not_equal=””]n

Editor

n

[foreach 1188]n

n[/foreach]

n[/if 1190] [if 1177 not_equal=””]n

Reviewer

n

[foreach 1176]n

n[/foreach]

n[/if 1177]

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n n function myfun() {n x = document.getElementById(“editor”);n y = document.getElementById(“down”);n z = document.getElementById(“up”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n function myfun2() {n x = document.getElementById(“reviewer”);n y = document.getElementById(“down2”);n z = document.getElementById(“up2”);n if (x.style.display == “none”) {n x.style.display = “block”;n }n else {n x.style.display = “none”;n }n if (y.style.display == “none”) {n y.style.display = “block”;n }n else {n y.style.display = “none”;n }n if (z.style.display == “none”) {n z.style.display = “block”;n }n else {n z.style.display = “none”;n }n }n”}]