Using Multitarget Molecular Docking to Examine the Antiviral Potential of Clerodendrum Phlomidis against Measles

Year : 2024 | Volume :01 | Issue : 02 | Page : 32-42
By

Sampriya Raj

Samiksha Bhor

  1. Student Department of Biotechnology, NMAM Institute of Technology, Nitte Karnataka India
  2. Bioinformatics Associate Department of Bioinformatics, Bionome, Bengaluru Karnataka India

Abstract

Objective: Measles, a viral disease caused by a member of the Paramyxoviridae virus family, is highly contagious and characterized by a respiratory illness and a maculopapular rash on the skin. Children are the main victims of the illness. In the context of drug development, this study investigates the efficacy of phytocompounds derived from Clerodendrum phlomidis against the target protein of the measles virus. Methods: The 7SKS protein was retrieved from the Protein Data Bank (PDB) database. Molecular docking studies were conducted systematically using PyRx and BIOVIA Discovery Studio Visualizer to assess the binding affinities of phytocompounds to the target protein. To evaluate the pharmacological properties of the phytocompounds, Swiss-ADME and ADMET lab were employed. Results: The docking results indicate that among the phytocompounds tested, Pectolinarin, beta-sitosterol, Clerodendrin A, Clerodin, Clerosterol, Daucosterol, Scutellarein, and Sterol exhibited the highest binding affinities to the target protein. However, based on the ADMET profile and drug-likeness prediction analysis, Clerodin and Scutellarein were found to have drug-like properties among the eight compounds evaluated. Conclusions: The results of this study indicate that Clerodin and Scutellarein possess specific binding affinity and therefore may be effective against the matrix protein. As such, these phytocompounds hold potential for use in therapeutic strategies against measles disease

Keywords: Paramyxoviridae, Measles disease, 7SKS protein, Clerodendrum phlomidis, phytocompounds, Molecular docking, ADME.

[This article belongs to International Journal of Molecular Biotechnological Research(ijmbr)]

How to cite this article: Sampriya Raj, Samiksha Bhor. Using Multitarget Molecular Docking to Examine the Antiviral Potential of Clerodendrum Phlomidis against Measles. International Journal of Molecular Biotechnological Research. 2023; 01(02):32-42.
How to cite this URL: Sampriya Raj, Samiksha Bhor. Using Multitarget Molecular Docking to Examine the Antiviral Potential of Clerodendrum Phlomidis against Measles. International Journal of Molecular Biotechnological Research. 2023; 01(02):32-42. Available from: https://journals.stmjournals.com/ijmbr/article=2023/view=149183

Browse Figures

References

  1. World Health Organization: WHO. (2023). Measles. who.int. https://www.who.int/news-room/fact-sheets/detail/measles
  2. Diane E. Griffin. Measles Vaccine. Viral Immunology. Mar 2018.86-95. Published in Volume: 31 Issue 2: March 1, 2018 Online Ahead of Print: December 19, 2017
  3. Mina, M. J., Kula, T., Leng, Y., Li, M. Z., De Vries, R. D., Knip, M., Siljander, H., Rewers, M., Choy, D. F., Wilson, M., Larman, H. B., Nelson, A. M., Griffin, D. E., De Swart, R. L., & Elledge, S. J. (2019). Measles virus infection diminishes pre-existing antibodies that offer protection from other pathogens. Science, 366(6465), 599–606.
  4. Laksono, B. M., De Vries, R. D., McQuaid, S., Duprex, W. P., & De Swart, R. L. (2016). Measles Virus Host Invasion and Pathogenesis. Viruses, 8(8), 210.
  5. Mukherjee, P. K., Harwansh, R. K., Bahadur, S., Banerjee, S., Kar, A., Chanda, J., Biswas, S., Ahmmed, S. M., & Katiyar, C. (2017). Development of Ayurveda – Tradition to trend. Journal of Ethnopharmacology, 197, 10–24.
  6. Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy reviews, 8(16), 73–80.
  7. Jameel, M. N., Ali, A., & Ali, M. K. (2017). Extraction and isolation of new compounds from traditional herbal medicine; Clerodendrum phlomidis Linn. Future Journal of Pharmaceutical Sciences, 3(2), 118–123
  8. Chauhan, M. (2019). Agnimantha / Clerodendrum Phlomidis. Planet Ayurveda. https://www.planetayurveda.com/library/agnimantha-clerodendrum-phlomidis/
  9. Chowdhary, Y. (2022). Chemical Composition of Clerodendrum Phlomidis: A Review. Asian Journal of Research In Pharmaceutical Sciences, 12(02), 133-136.
  10. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-aided Molecular Design, 27(3), 221–234.
  11. Norris, M., Husby, M. L., Kiosses, W. B., Yin, J., Saxena, R., Rennick, L. J., Heiner, A., Harkins, S., Pokhrel, R., Schendel, S. L., Hastie, K. M., Landeras-Bueno, S., Salie, Z. L., Lee, B., Chapagain, P. P., Maisner, A., Duprex, W. P., Stahelin, R. V., & Saphire, E. O. (2022). Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization. Science Advances, 8(29).
  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28:235-42 Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 2018;27:293-315.
  13. Gleichmann, N. (2023). What Is ADME? Drug Discovery From Technology Networks. https://www.technologynetworks.com/drug-discovery/articles/what-is-adme-336683
  14. ADME and Toxicology | MoDRN. (n.d.). https://modrn.yale.edu/education/undergraduate-curriculum/modrn-u-modules/adme-and-toxicology
  15. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 2018;27:293-315
  16. Ramachandran plot evaluation (n.d.). https://swift.cmbi.umcn.nl/servers/html/ramchk.html
  17. (n.d.). PubChem. PubChem. https://pubchem.ncbi.nlm.nih.gov/
  18. Mcconkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Curr Sci 2002;83:845-55.
  19. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461.
  20. Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905–919.
  21. van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: towards prediction paradise?. Nature reviews. Drug discovery, 2(3), 192–204
  22. Kabra SK, Lodha R. Antibiotics for preventing complications in children with measles. Cochrane Database of Systematic Reviews 2013, Issue 8. Art. No.: CD001477. DOI: 10.1002/14651858.CD001477.pub4. Accessed 15 April 2023.
  23. Measles: Epidemiology and transmission. (n.d.). MediLib. https://www.medilib.ir/uptodate/show/3019
  24. Morris, G. M., & Lim-Wilby, M. (2008). Molecular Docking. Humana Press eBooks, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
  25. Trott O, Olson AJ. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-61.
  26. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform 2011;3:33.
  27. Biovia DS. Discovery Studio Modeling Environment. San Diego: Dassault Systemes; 2015. Available from: https://www.scirp. org/(S(351jmbntv- nsjt1aadkposzje))/reference/referencespapers. aspx?referenceid=2450411 [Last accessed on 2023 April 15].
  28. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717.
  29. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021;49:W5-14.
  30. Daina A, Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016;11:1117-21
  31. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 168849, Pectolinarin. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Pectolinarin.
  32. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 5281697, Scutellarein. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Scutellarein.
  33. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 442013, Clerodendrin A. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Clerodendrin-A.
  34. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 442014, Clerodin. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Clerodin.
  35. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 1107, Sterol. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Sterol.
  36. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 5283638, Clerosterol. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Clerosterol.
  37. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 222284, Beta-Sitosterol. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Beta-Sitosterol.
  38. National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 5742590, Sitogluside. Retrieved April 15, 2023 from https://pubchem.ncbi.nlm.nih.gov/compound/Sitogluside.
  39. Kondamudi, N. P. (2022, December 23). Measles. StatPearls – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK448068/

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received May 9, 2023
Accepted September 25, 2023
Published October 25, 2023