Performance Characterization of Couette Flow Membrane Module Through Computational Fluid Dynamics

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : June 6, 2024 at 9:52 pm | [if 1553 equals=””] Volume :10 [else] Volume :10[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 01 | Page : 1-5

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Keka Rana, Debasish Sarkar

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Profesor, Assistant Profesor Haldia Institute of Technology, Haldia Institute of Technology Haldia, Haldia India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nMembrane-based separation has been in rigorous applications in health services since the last few decennia. Dynamic Shear Enhanced Membrane Filtration Pilots (DSEMFPs) is a promising membrane module. The first reported DSEMFPs was a Couette flow type module in 1985. It was used for collecting plasma from donors. This module consists of two concentric cylinders. The outer one is fixed while the inner one is rotating, having a membrane on the outer surface of it. High rotational velocities generate Taylor vortices. These Taylor vortices and small annular spaces easily create high shear on the membrane surface to efficiently control concentration polarization (CP), subsequent fouling and maintain the minimum decline of permeate flux. The exhaustive analysis of this DSEMFP required for large-scale applications. The absence of this instigates further detailed study of it. In particular, shear stress distribution on the membrane surface with varying transmembrane pressure and rotational velocity is vital. Moreover, for a clear understanding of the default interior, turbulent kinetic energy, turbulent kinetic energy dissipation rate, velocity vector, strain rate and vortices are also studied. All the analyses suggest the positive effect of the high rotational speed of the inner cylinder for maximum permeate output.

n

n

n

Keywords: Concentration polarization, Fouling, Membrane, Couette flow, Taylor vortices

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Composite Materials and Matrices(ijcmm)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Composite Materials and Matrices(ijcmm)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Keka Rana, Debasish Sarkar. Performance Characterization of Couette Flow Membrane Module Through Computational Fluid Dynamics. International Journal of Composite Materials and Matrices. June 6, 2024; 10(01):1-5.

n

How to cite this URL: Keka Rana, Debasish Sarkar. Performance Characterization of Couette Flow Membrane Module Through Computational Fluid Dynamics. International Journal of Composite Materials and Matrices. June 6, 2024; 10(01):1-5. Available from: https://journals.stmjournals.com/ijcmm/article=June 6, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”]

n


nn[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Moulai-Mostefa N, Akoum O, Nedjihoui M, Ding L, Jaffrin M Y. 2007. Comparison between rotating disk and vibratory membranes in the ultrafiltration of oil-in-water emulsions. Desalination. 206:494–498. https://doi.org/10.1016/j.desal.2006.04.061.
    2. Jaffrin M Y. 2008. Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems. J. Membr. Sci. 324:7–25. https://doi.org/10.1016/j.memsci.2008.06.050.
    3. Kaplan, A. A., Halley, S., 1988. Evaluation of a rotating filter for use with therapeutic plasma exchange. ASAIO Trans. 34:274–76.
    4.Rock, G., Titley, P., McCombie, N., 1986. Plasma collection using an automated membrane device. Transfusion. 26:269–75.
    5.Cai J J, Hawboldt K, Abdi M A. 2016. Analysis of the effect of module design on gas absorption in cross flow hollow membrane contactors via Computational Fluid Dynamics (CFD) analysis. J. Membr. Sci.520:415-424. https://doi.org/10.1016/j.memsci.2016.07.054.
    6.Salama A. 2020. Investigation of the onset of the breakup of a permeating oil droplet at a membrane surface in crossflow filtration: A new model and CFD verification. Int. J. Multiph. Flow. 126:103255. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103255.
    7.Sarkar D, Sarkar A, Roy A, Bhattacharjee C. 2012. Performance characterization and design evaluation of spinning basket membrane (SBM) module using computational fluid dynamics (CFD). Sep. Purif. Technol. 94:23–33. https://doi.org/10.1016/j.seppur.2012.03.034.
    8.Sun S K, Zhao B, Jia X H, Peng X Y. 2017. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump. Vacuum. 137:195-204. https://doi.org/10.1016/j.vacuum.2017.01.005.
    9.Naskar M, Rana K, Chatterjee D, Dhara T, Sultana R, Sarkar D. 2019. Design, performance characterization and hydrodynamic modeling of intermeshed spinning basket membrane (ISBM) module. Chem. Eng. Sci. 206:446–462. https://doi.org/10.1016/j.ces.2019.05.049.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Open Access Review Article

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 10
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 01
Received April 29, 2024
Accepted May 14, 2024
Published June 6, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]