Gut Microbiome Dysbiosis During Metabolic Disorders: Diabetes

Year : 2024 | Volume : | : | Page : –
By

Saksham Gupta,

Sumiran Srivastava,

  1. Student, Department of Biochemistry, Bundelkhand University, Jhansi, Uttar Pradesh, India
  2. Assistant Professor, Department of Biochemistry, Bundelkhand University, Jhansi, Uttar Pradesh, India

Abstract

Understanding the intricate interplay between gut microbiome dysbiosis and diabetes is crucial due to the escalating prevalence and impact of diabetes mellitus globally. This comprehensive review examines the current understanding of this relationship, elucidating how alterations in the gut microbiome composition contribute to diabetes pathogenesis by influencing metabolic homeostasis, immune regulation, and insulin resistance. Dysregulation of gut microbial communities leads to shifts in diversity and abundance, exacerbating chronic low-grade inflammation and gut barrier dysfunction, which further perpetuates metabolic dysfunction. Microbial metabolites, such as short-chain fatty acids and bile acids, play pivotal roles in modulating host metabolism and immune responses, thereby influencing the development and progression of diabetes. Importantly, dietary factors significantly shape the diabetic gut microbiome, offering avenues for dietary interventions to modulate microbial composition and function. Various therapeutic strategies targeting the gut microbiome, including probiotics, prebiotics, and dietary supplements, hold promise for improving metabolic outcomes in diabetes. However, integrating these interventions into clinical practice poses challenges but offers potential benefits for optimizing treatment outcomes and reducing disease complications. Continued research efforts are essential to unravel the complex interactions between the gut microbiome and diabetes, paving the way for innovative therapeutic approaches and personalized interventions in the future. This review underscores the significance of understanding the gut microbiome-diabetes nexus and its implications for disease management and future research directions.

Keywords: Diabetes, dysbiosis, guts microbiome, Microbial metabolites, therapeutic strategies

How to cite this article:
Saksham Gupta, Sumiran Srivastava. Gut Microbiome Dysbiosis During Metabolic Disorders: Diabetes. Emerging Trends in Metabolites. 2024; ():-.
How to cite this URL:
Saksham Gupta, Sumiran Srivastava. Gut Microbiome Dysbiosis During Metabolic Disorders: Diabetes. Emerging Trends in Metabolites. 2024; ():-. Available from: https://journals.stmjournals.com/etm/article=2024/view=176933


Full Text PDF for email

References

  1. Lepage, P., Leclerc, M. C., Joossens, M., et al. (2013). A metagenomic insight into our gut’s microbiome. Gut, 62, 146–158.
  2. Flint, H. J., Scott, K. P., Louis, P., et al. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 9, 577–589.
  3. Shanahan, F. (2012). The gut microbiota—a clinical perspective on lessons learned. Nature Reviews Gastroenterology & Hepatology, 9, 609–614.
  4. Eckburg, P. B., Bik, E. M., Bernstein, C. N., et al. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.
  5. Costello, E. K., Lauber, C. L., Hamady, M., et al. (2009). Bacterial community variation in human body habitats across space and time. Science, 326, 1694–1697.
  6. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.
  7. Tremaroli, V., & Backhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489, 242–249.
  8. Qin, J., Li, R., Raes, J., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.
  9. Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11, 98–107.
  10. Tilg, H., & Moschen, A. R. (2008). Inflammatory mechanisms in the regulation of insulin resistance. Molecular Medicine, 14, 222–231.
  11. Moller, D. E., & Kaufman, K. D. (2005). Metabolic syndrome: a clinical and molecular perspective. Annual Review of Medicine, 56, 45–62.
  12. Johnson, A. M., & Olefsky, J. M. (2013). The origins and drivers of insulin resistance. Cell, 152, 673–684.
  13. Kau, A. L., Ahern, P. P., Griffin, N. W., et al. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474, 327–336.
  14. Moschen, A. R., Wieser, V., & Tilg, H. (2012). Dietary factors: major regulators of the gut’s microbiota. Gut Liver, 6, 411–416.
  15. Pussinen, P. J., Havulinna, A. S., Lehto, M., et al. (2011). Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care, 34, 392–397.
  16. Lassenius, M. I., Pietilainen, K. H., Kaartinen, K., et al. (2011). Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care, 34, 1809–1815.
  17. Amar, J., Chabo, C., Waget, A., et al. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 3, 559–572.
  18. Burcelin, R. (2012). Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda), 27, 300–307.
  19. Breen, D. M., Rasmussen, B. A., Cote, C. D., et al. (2013). Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes, 62, 3005–3013.
  20. Karlsson, F., Tremaroli, V., Nielsen, J., et al. (2013). Assessing the human gut microbiota in metabolic diseases. Diabetes, 62, 3341–3349.
  21. Qin, J., Li, Y., Cai, Z., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.
  22. Karlsson, F. H., Tremaroli, V., Nookaew, I., et al. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103.
  23. Larsen, N., Vogensen, F. K., van den Berg, F. W., et al. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5, e9085.
  24.  Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PloS one. 2013 Aug 27;8(8):e71108
  25. Giongo, A., Gano, K. A., Crabb, D. B., et al. (2011). Toward defining the autoimmune microbiome for type 1 diabetes. ISME Journal, 5, 82–91.
  26. Murri, M., Leiva, I., Gomez-Zumaquero, J. M., et al. (2013). Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Medicine, 11, 46.
  27. Geach, T. (2016). Metabolism: Diabetes mellitus promotes hepatic fructose uptake. Nature Reviews Endocrinology, 12, 688.
  28. Kanter, J. E., & Bornfeldt, K. E. (2016). Impact of Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(6), 1049-1053.
  29. Vaarala, O. The gut as a regulator of early inflammation in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity 18(4):p 241-247, August 2011.
  30. Vaarala, O., Atkinson, M. A., & Neu, J. (2008). The ‘perfect storm’ for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 57(10), 2555–2562.
  31. Turley, S. J., Lee, J. W., Dutton-Swain, N., et al. (2005). Endocrine self and gut nonself intersect in the pancreatic lymph nodes. Proceedings of the National Academy of Sciences of the United States of America, 102(49), 17729–17733.
  32. Ha¨nninen, A., Nurmela, R., Maksimow, M., et al. (2007). Islet beta-cell-specific T cells can use different homing mechanisms to infiltrate and destroy pancreatic islets. The American Journal of Pathology, 170(1), 240–250.
  33. Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(10), 799–809.
  34. Graham, S., Courtois, P., Malaisse, W. J., et al. (2004). Enteropathy precedes type 1 diabetes in the BB rat. Gut, 53(10), 1437–1444.
  35. Watts, T., Berti, I., Sapone, A., et al. (2005). Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2916–2921.
  36. Neu, J., Reverte, C. M., Mackey, A. D., et al. (2005). Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. Journal of Pediatric Gastroenterology and Nutrition, 40(5), 589–595.
  37. Visser, J. T., Lammers, K., Hoogendijk, A., et al. (2010). Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone biobreeding rat. Diabetologia, 53(12), 2621–2628.
  38. Lee, A. S., Gibson, D. L., Zhang, Y., et al. (2010). Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia, 53(4), 741–748.
  39. Luopaja¨rvi, K., Savilahti, E., Virtanen, S. M., et al. (2008). Enhanced levels of cow’s milk antibodies in infancy in children who develop type 1 diabetes later in childhood. Pediatric Diabetes, 9(6), 434–441.
  40. 11. Vaarala, O. (2008). Leaking gut in type 1 diabetes. Current Opinion in Gastroenterology, 24(6), 701–706.
  41. Bosi, E., Molteni, L., Radaelli, M. G., et al. (2006). Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia, 49(12), 2824–2827.
  42. Westerholm-Ormio, M., Vaarala, O., Pihkala, P., et al. (2003). Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes, 52(9), 2287–2295.
  43. Auricchio, R., Paparo, F., Maglio, M., et al. (2004). In vitro-deranged intestinal immune response to gliadin in type 1 diabetes. Diabetes, 53(8), 1680–1683.
  44. Tiittanen, M., Westerholm-Ormio, M., Verkasalo, M., et al. (2008). Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes. Clinical & Experimental Immunology, 152(3), 498–507.
  45. Karczewski, J., Troost, F. J., Konings, I., et al. (2010). Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(5), G851–G859.
  46. Coombes, J. L., & Powrie, F. (2008). Dendritic cells in intestinal immune regulation. Nature Reviews Immunology, 8(6), 435–446.
  47. Sudo, N., Sawamura, S., Tanaka, K., et al. (1997). The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. Journal of Immunology, 159(4), 1739–1745.
  48. Tsuda, M., Hosono, A., Yanagibashi, T., et al. (2010). Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen. Immunology Letters, 132(1-2), 45–52.
  49. Brugman, S., Klatter, F. A., Visser, J. T., et al. (2006). Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia, 49(9), 2105–2108.
  50. Roesch, L. F., Lorca, G. L., Casella, G., et al. (2009). Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. The ISME Journal, 3(5), 536–548.
  51. Alam, C., Valkonen, S., Palagani, V., et al. (2010). Inflammatory tendencies and overproduction of IL-17 in the colon of young NOD mice are counteracted with diet change. Diabetes, 59(9), 2237–2246.
  52. Wen, L., Ley, R. E., Volchkov, P. Y., et al. (2008). Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455(7216), 1109–1113.
  53. Valladares, R., Sankar, D., Li, N., et al. (2010). Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One, 5(5), e10507.
  54. Lau, K., Benitez, P., Ardissone, A., et al. (2011). Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. Journal of Immunology, 186(6), 3538–3546.
  55. Onishi, R. M., & Gaffen, S. L. (2010). Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology, 129(2), 311–321.
  56. Honkanen, J., Nieminen, J. K., Gao, R., et al. (2010). IL-17 immunity in human type 1 diabetes. Journal of Immunology, 185(4), 1959–1967.
  57. Emamaullee, J. A., Davis, J., Merani, S., et al. (2009). Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes, 58(6), 1302–1311.
  58. Bending, D., De La Peña, H., Veldhoen, M., et al. (2009). Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. Journal of Clinical Investigation, 119(2), 565–572.
  59. Marwaha, A. K., Crome, S. Q., Panagiotopoulos, C., et al. (2010). Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. Journal of Immunology, 185(7), 3814–3818.
  60. Giongo, A., Gano, K. A., Crabb, D. B., et al. (2011). Toward defining the autoimmune microbiome for type 1 diabetes. ISME Journal, 5(1), 82–91.
  61.  Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. Bmj. 2011 Feb 3; 342.
  62. Honeyman, M. C., Stone, N. L., Falk, B. A., et al. (2010). Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. Journal of Immunology, 184(4), 2204–2210.
  63. Ylipaasto, P., Kutlu, B., Rasilainen, S., et al. (2005). Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia, 48(8), 1510–1522.
  64. Oikarinen, M., Tauriainen, S., Honkanen, T., et al. (2008). Detection of enteroviruses in the intestine of type 1 diabetic patients. Clinical and Experimental Immunology, 151(1), 71–75.
  65. Oikarinen, S., Martiskainen, M., Tauriainen, S., et al. (2011). Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes, 60(1), 276–279.
  66. Stene, L. C., Oikarinen, S., Hyöty, H., et al. (2010). Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the Diabetes and Autoimmunity Study in the Young (DAISY). Diabetes, 59(12), 3174–3180.
  67. Tapia, G., Cinek, O., Rasmussen, T., et al. (2011). Human enterovirus RNA in monthly fecal samples and islet autoimmunity in Norwegian children with high genetic risk for type 1 diabetes: the MIDIA study. Diabetes Care, 34(1), 151–155.
  68. Graham, K. L., Sanders, N., Tan, Y., et al. (2008). Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. Journal of Virology, 82(13), 6139–6149.
  69. Vaarala, O. (2006). Is it dietary insulin? Annals of the New York Academy of Sciences, 1079, 350–359.
  70. Knip, M., Virtanen, S. M., Seppä, K., et al. (2010). Finnish TRIGR Study Group Dietary intervention in infancy and later signs of beta-cell autoimmunity. New England Journal of Medicine, 363(20), 1900–1908.
  71.  Vaarala O, Knip M, Ilonen J, Virtanen SM, Ruohtula T, Pesola J, Harkonen T, Kallioinen H, Koski M, Poussa T, Komulainen J. Removal of Bovine Insulin from Cow’s Milk Formula Protects from the Early Initiation of Beta-Cell Autoimmunity. Diabetes. 2010 Jun; 59:A88-.
  72. Norris, J. M., Barriga, K., Klingensmith, G., et al. (2003). Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA, 290(13), 1713–1720.
  73. Ziegler, A.-G., Schmid, S., Huber, D., et al. (2003). Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA, 290(13), 1721–1728.
  74. Mojibian, M., Chakir, H., Lefebvre, D. E., et al. (2009). Diabetes-specific HLA-DR-restricted proinflammatory T-cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes,58(8), 1789–1796.
  75. Chakir, H., Lefebvre, D. E., Wang, H., et al. (2005). Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats. Diabetologia, 48(8), 1576–1584.
  76. Maurano, F., Mazzarella, G., Luongo, D., et al. (2005). Small intestinal enteropathy in nonobese diabetic mice fed a diet containing wheat. Diabetologia, 48(5), 931–937.
  77. Funda, D. P., Kaas, A., Tlaskalová-Hogenová, H., & Buschard, K. (2008). Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes/Metabolism Research and Reviews, 24(1), 59–63.
  78. Lammers, K. M., Lu, R., Brownley, J., Lu, B., et al. (2008). Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology, 135(6), 194–204.
  79. Hansen, A. K., Ling, F., Kaas, A., et al. (2006). Diabetes preventive gluten-free diet decreases the number of caecal bacteria in nonobese diabetic mice. Diabetes/Metabolism Research and Reviews, 22(3), 220–225.
  80. Pussinen, P. J., Havulinna, A. S., Lehto, M., et al. (2011). Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care, 34(2), 392–397.
  81. Lassenius, M. I., Pietilainen, K. H., Kaartinen, K., et al. (2011). Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care, 34(8), 1809–1815.
  82. Amar, J., Chabo, C., Waget, A., et al. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 3(9), 559–572.
  83. Backhed, F., Ding, H., Wang, T., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718–15723.
  84. Wu, G. D., Chen, J., Hoffmann, C., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108.
  85. De Filippo, C., Cavalieri, D., Di Paola, M., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691–14696.
  86. Qin, J., Li, Y., Cai, Z., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.
  87. Karlsson, F. H., Tremaroli, V., Nookaew, I., et al. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99–103.
  88.  Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PloS one. 2013 Aug 27; 8(8):e71108.
  89. Flint, H. J., Bayer, E. A., Rincon, M. T., et al. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121–131.
  90. Robertson, M. D., Currie, J. M., Morgan, L. M., et al. (2003). Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia, 46(5), 659–665.
  91. Robertson, M. D., Bickerton, A. S., Dennis, A. L., et al. (2005). Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. American Journal of Clinical Nutrition, 82(3), 559–567.
  92. Mendeloff, A. I. (1977). Dietary fiber and human health. New England Journal of Medicine, 297(15), 811–814.
  93. Ray, T. K., Mansell, K. M., Knight, L. C., et al. (1983). Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. American Journal of Clinical Nutrition, 37(3), 376–381.
  94. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., et al. (2003). The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 278(13), 11312–11319.
  95. Le Poul, E., Loison, C., Struyf, S., et al. (2003). Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry, 278(28), 25481–25489.
  96. Kimura, I., Ozawa, K., Inoue, D., et al. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications, 4, 1829.
  97. Tolhurst, G., Heffron, H., Lam, Y. S., et al. (2012). Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes, 61(2), 364–371.
  98. Samuel, B. S., Shaito, A., Motoike, T., et al. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 16767–16772.
  99. De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., et al. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1-2), 84–96.
  100. Arpaia, N., Campbell, C., Fan, X., et al. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.
  101. Smith, P. M., Howitt, M. R., Panikov, N., et al. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573.
  102. Bindels, L. B., Porporato, P., Dewulf, E. M., et al. (2012). Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British Journal of Cancer, 107(7), 1337–1344.
  103. Trompette, A., Gollwitzer, E. S., Yadava, K., et al. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159–166.
  104. Swann, J. R., Want, E. J., Geier, F. M., et al. (2011). Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4523–4530.
  105. Yoon, J. C., Chickering, T. W., Rosen, E. D., et al. (2000). Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Molecular and Cellular Biology, 20(14), 5343–5349.
  106. Bäckhed, F., Manchester, J. K., Semenkovich, C. F., et al. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 979–984.
  107. Tilg, H., & Kaser, A. (2011). Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 121(6), 2126–2132.
  108. Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., et al. (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science, 328(5975), 228–231.
  109. Stienstra, R., Joosten, L. A., Koenen, T., et al. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism, 12(6), 593–605.
  110. Henao-Mejia, J., Elinav, E., Jin, C., et al. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482(7384), 179–185.
  111. Cani, P. D., Bibiloni, R., Knauf, C., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.
  112. Everard, A., Lazarevic, V., Derrien, M., et al. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 60(11), 2775–2786.
  113. Serino, M., Luche, E., Gres, S., et al. (2012). Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut, 61(4), 543–553.
  114. Moschen, A. R., Molnar, C., Geiger, S., et al. (2010). Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumor necrosis factor alpha expression. Gut, 59(9), 1259–1264.
  115. Moschen, A. R., Molnar, C., Enrich, B., et al. (2011). Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Molecular Medicine, 17(7-8), 840–845.
  116. Amar, J., Serino, M., Lange, C., et al. (2011). Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia, 54(12), 3055–3061.
  117. 117.Amar, J., Lange, C., Payros, G., et al. (2013). Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS ONE, 8(2), e54461.
  118. Burcelin, R., Serino, M., Chabo, C., et al. (2013). Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity & Metabolism, 15(Suppl 3), 61–70.
  119. Derrien, M., Vaughan, E. E., Plugge, C. M., et al. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1469–1476.
  120. Santacruz, A., Collado, M. C., Garcia-Valdes, L., et al. (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 104(1), 83–92.
  121. Karlsson, C. L., Onnerfalt, J., Xu, J., et al. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. Obesity, 20(10), 2257–2261.
  122. Everard, A., Belzer, C., Geurts, L., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071.
  123. Shin, N. R., Lee, J. C., Lee, H. Y., et al. (2014). An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 63(5), 727–735.
  124. Hansen, C. H., Krych, L., Nielsen, D. S., et al. (2012). Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia, 55(8), 2285–2294.
  125. Kang, C. S., Ban, M., Choi, E. J., et al. (2013). Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE, 8(10), e76520.
  126. Jakobsdottir, G., Xu, J., Molin, G., et al. (2013). High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE, 8(11), e80476.
  127. Ganesh, B. P., Klopfleisch, R., Loh, G., et al. (2013). Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE, 8(7), e74963.
  128. Furet, J. P., Kong, L. C., Tap, J., et al. (2010). Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12), 3049–3057.
  129. Remely, M., Aumueller, E., Merold, C., et al. (2014). Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene, 537(1), 85–92.
  130. Cani, P. D., Amar, J., Iglesias, M. A., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.
  131. Pereira, M. A., Kartashov, A. I., Ebbeling, C. B., Van Horn, L., Slattery, M. L., Jacobs, D. R. Jr, et al. (2005). Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. The Lancet, 365(9453), 36–42.
  132. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820.
  133. Houghton D, Hardy T, Stewart C, Errington L, Day CP, Trenell MI, Avery L. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia. 2018 Aug;61:1700-11.
  134. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774.
  135. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., et al. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573. https://doi.org/10.1126/science.1241165.
  136. Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases, 46, S58–S61.
  137. Brunkwall, L., & Orho-Melander, M. (2017). The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 60(6), 943–951. https://doi.org/10.1007/s00125-017-4278-3.
  138. Li, X., Wang, E., Yin, B., Fang, D., Chen, P., Wang, G., et al. (2017). Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Beneficial Microbes, 8(3), 421–432. https://doi.org/10.3920/BM2016.0167.
  139. Tian, P., Li, B., He, C., Song, W., Hou, A., Tian, S., et al. (2016). Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food & Function, 7(9), 3789–3797.
  140. 75. Daliri, E. B., Lee, B. H., & Oh, D. H. (2017). Current perspectives on antihypertensive probiotics. Probiotics and Antimicrobial Proteins, 9(2), 91–101.
  141. Ivey, K. L., Hodgson, J. M., Kerr, D. A., Lewis, J. R., Thompson, P. L., & Prince, R. L. (2014). The effects of probiotic bacteria on glycaemic control in overweight men and women: a randomised controlled trial. European Journal of Clinical Nutrition, 68(4), 447–452. https://doi.org/10.1038/ejcn.2013.294
  142. Simon, M. C., Strassburger, K., Nowotny, B., Kolb, H., Nowotny, P., Burkart, V., et al. (2015). Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care, 38(10), 1827–1834. https://doi.org/10.2337/dc14-2690.
  143. Mobini, R., Tremaroli, V., Ståhlman, M., Karlsson, F., Levin, M., Ljungberg, M., et al. (2017). Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial. Diabetes, Obesity & Metabolism, 19(4), 579–589. https://doi.org/10.1111/dom.12861.
  144. Ruan, Y., Sun, J., He, J., Chen, F., Chen, R., & Chen, H. (2015). Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. PLoS One, 10(7), e0132121. https://doi.org/10.1371/journal.pone.0132121.
  145. Li, C., Li, X., Han, H., Cui, H., Peng, M., Wang, G., et al. (2016). Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine (Baltimore), 95(26), e4088. https://doi.org/10.1097/MD.0000000000004088.
  146. Samah, S., Ramasamy, K., Lim, S. M., & Neoh, C. F. (2016). Probiotics for the management of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 118, 172–182. https://doi.org/10.1016/j.diabres.2016.06.014.
  147. Akbari, V., & Hendijani, F. (2016). Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutrition Reviews, 74(12), 774–784.
  148. Yao, K., Zeng, L., He, Q., Wang, W., Lei, J., & Zou, X. (2017). Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Medical Science Monitor, 23, 3044–3053.
  149. de Groot, P. F., Frissen, M. N., de Clercq, N. C., & Nieuwdorp, M. (2017). Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes, 8(3), 253–267. https://doi.org/10.1080/19490976.2017.1293224.
  150. Vrieze, A., Van Nood, E., Holleman, F., Salojärvi, J., Kootte, R. S., Bartelsman, J. F., et al. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4), 913–916.e7. https://doi.org/10.1053/j.gastro.2012.06.031
  151. Mulla, C. M., Middelbeek, R. J. W., & Patti, M. E. (2018). Mechanisms of weight loss and improved metabolism following bariatric surgery. Annals of the New York Academy of Sciences, 1411(1), 53–64. https://doi.org/10.1111/nyas.13409.
  152. Guo, Y., Huang, Z. P., Liu, C. Q., Qi, L., Sheng, Y., & Zou, D. J. (2018). Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. European Journal of Endocrinology, 178(1), 43–56.

Ahead of Print Subscription Review Article
Volume
Received September 25, 2024
Accepted October 1, 2024
Published October 4, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.