Eco-Friendly Elixirs: A Critical Review of Biosurfactants for Sustainable Wastewater Solutions

Year : 2024 | Volume :11 | Issue : 02 | Page : –
By

Rushil Bhatt,

Piyush Shrivastava,

Jharna Gupta,

Aditi Vetal,

  1. Professor Chemical Engineering Department, M S University, Vadodara Gujarat India
  2. Research Scholar Chemical Engineering Department, M S University, Vadodara Gujarat India
  3. Research Scholar Chemical Engineering Department, M S University, Vadodara Gujarat India
  4. Research Scholar Chemical Engineering Department, M S University, Vadodara Gujarat India

Abstract

Biosurfactants are the amphiphilic substances which are acquired from the remains of the living microorganisms and have attracted a lot of scientific interests because of their applicability in various fields. This review aims at reviewing current research and development on biosurfactants with special emphasis on their application in wastewater and oil. Biosurfactants being less hazardous to the environment are produced by microorganisms and works as a substitute for chemically produced surfactants which are dangerous-persistent organic pollutants. One of the primary challenges associated with biosurfactants is the scalability of production and associated costs. Despite these hurdles, the benefits of biosurfactants outweigh the challenges. Their unique properties include stability under extreme conditions of pH and temperature, biodegradability, and improved physicochemical stability. These attributes render biosurfactants particularly suitable for applications requiring environmental compliance and operational versatility.In the context of the oil and gas industry, biosurfactants show considerable promise. They facilitate enhanced oil recovery (EOR) by lowering interfacial tension between oil and water, thereby improving the efficiency of extraction processes. Moreover, ongoing research explores novel biosurfactant types derived from diverse microbial sources, which could further expand their applicability and effectiveness. Interestingly, biosurfactants show potential within the oil and gas sector promising directions within the framework of the novel biosurfactant types based on microorganisms rather than organic or marine origin. Major benefits of biosurfactants, apart from biodegradability and low toxicity, include renewability, stability to extreme conditions of pH and temperatures and improved physicochemical stability. These attributes make them specially suitable to applications which require superior environmental compliance and operational flexibility. Summing up, biosurfactants may be referred to as an endlessly developing branch of biotechnologies and a promising area for the further research and creation of new applications. The diverse applications show the suitability to disrupt sectors dependent on surfactant advancement, prousing environmental solutions following today’s policy aspirations. In future research endeavors, it is believed that more advancements will be made that can underscore biosurfactant’s efficiency in production, cost effectiveness and their variety applications in technology for a greener world.

Keywords: Biosurfactants, Microbial surface-active compounds, Amphiphilic molecules, Alternative substrates

[This article belongs to Emerging Trends in Chemical Engineering(etce)]

How to cite this article: Rushil Bhatt, Piyush Shrivastava, Jharna Gupta, Aditi Vetal. Eco-Friendly Elixirs: A Critical Review of Biosurfactants for Sustainable Wastewater Solutions. Emerging Trends in Chemical Engineering. 2024; 11(02):-.
How to cite this URL: Rushil Bhatt, Piyush Shrivastava, Jharna Gupta, Aditi Vetal. Eco-Friendly Elixirs: A Critical Review of Biosurfactants for Sustainable Wastewater Solutions. Emerging Trends in Chemical Engineering. 2024; 11(02):-. Available from: https://journals.stmjournals.com/etce/article=2024/view=160252



Browse Figures

References

  1. Miao, Y., To, M. H., Siddiqui, M. A., Wang, H., Lodens, S., Chopra, S. S., … & Lin, C. S. K. (2024). Sustainable biosurfactant production from secondary feedstock—recent advances, process optimization and perspectives. Frontiers in Chemistry, 12.
  2. Jiménez‐Peñalver, P., Koh, A., Gross, R., Gea, T., & Font, X. (2020). Biosurfactants from waste: structures and interfacial properties of sophorolipids produced from a residual oil cake. Journal of Surfactants and Detergents, 23(2), 481-486.
  3. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.
  4. Water, U. N. (2017). 2017 UN World Water Development Report: Wastewater the Untapped Resource.
  5. Yadav, V. K., Choudhary, N., Ali, D., Gnanamoorthy, G., Inwati, G. K., Almarzoug, M. H., … & Solanki, M. B. (2021). Experimental and computational approaches for the structural study of novel Ca-rich zeolites from incense stick ash and their application for wastewater treatment. Adsorption Science & Technology, 2021, 1-12.
  6. Yadav, V.K.; Ali, D.; Khan, S.H.; Gnanamoorthy, G.; Choudhary, N.; Yadav, K.K.; Thai, V.N.; Hussain, S.A.; Manhrdas, S. Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials 2020, 10, 1551.
  7. Yadav, V.K.; Yadav, K.K.; Gacem, A.; Gnanamoorthy, G.; Ali, I.H.; Khan, S.H.; Jeon, B.-H.; Kamyab, H.; Inwati, G.K.; Choudhary, N. A novel approach for the synthesis of vaterite and calcite from incense sticks ash waste and their potential for remediation of dyes from aqueous solution. Sustain. Chem. Pharm. 2022, 29, 100756.
  8. Irannajad, M.; Kamran Haghighi, H. Removal of heavy metals from polluted solutions by zeolitic adsorbents: A review. Environ. Process. 2021, 8, 7–35.
  9. Modi, S.; Inwati, G.K.; Gacem, A.; Saquib Abullais, S.; Prajapati, R.; Yadav, V.K.; Syed, R.; Alqahtani, M.S.; Yadav, K.K.;Islam, S.; et al. Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics 2022, 11, 708.
  10. Rahman, L.;Wong, Z.; Sarjadi, M.; Soloi, S.; Arshad, S.; Bidin, K.; Musta, B. Heavy metals removal from electroplating wastewater by waste fiber-based poly(Amidoxime) ligand. Water 2021, 13, 1260.
  11. Su, H.; Lin, J.; Chen, H.; Wang, Q. Production of a novel slow-release coal fly ash microbial fertilizer for restoration of mine vegetation. Waste Manag. 2021, 124, 185–194.
  12. Cao, M.; Hu, A.; Gad, M.; Adyari, B.; Qin, D.; Zhang, L.; Sun, Q.; Yu, C.-P. Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Sci. Total Environ. 2022, 823, 153680.
  13. Yadav, V.K.; Khan, S.H.; Choudhary, N.; Tirth, V.; Kumar, P.; Ravi, R.K.; Modi, S.; Khayal, A.; Shah, M.P.; Sharma, P.; et al. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J. Basic Microbiol. 2022, 62, 348–360.
  14. Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water pollutants: Sources and impact on the environment and human health. In Sensors in Water Pollutants Monitoring: Role of Material; Pooja, D., Kumar, P., Singh, P., Patil, S., Eds.; Springer: Singapore, 2020; pp. 43–62.
  15. Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008,42, 2849–2861.
  16. Sharma, R.; Agrawal, P.R.; Kumar, R.; Gupta, G.; Ittishree. Chapter 4—Current scenario of heavy metal contamination in water. In Contamination of Water; Ahamad, A., Siddiqui, S.I., Singh, P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 49–64.
  17. Rakib, M.J.; Rahman, A.; Onyena, A.P.; Kumar, R.; Sarker, A.; Hossain, M.B.; Islam, A.R.M.T.; Islam, S.; Rahman, M.;Jolly, Y.N.; et al. A comprehensive review of heavy metal pollution in the coastal areas of Bangladesh: Abundance, bioaccumulation, health implications, and challenges. Environ. Sci. Pollut. Res. 2022, 1–27.
  18. Hüesker, F.; Lepenies, R. Why does pesticide pollution in water persist? Environ. Sci. Policy 2022, 128, 185–193.
  19. Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.-U.;Ahn, H.-J.; et al. Emerging trends in the remediation of persistent organic pollutants using nanomaterials and related processes:A review. Nanomaterials 2022, 12, 2148.
  20. Sharma, B. Microbes as indicators of water quality and bioremediation of polluted waters: A novel approach. In Microbial Biotechnology in Environmental Monitoring and Cleanup; Pankaj, Sharma, A., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 44–60.
  21. The United Nations World Water Development Report 2023: partnerships and cooperation for water, 2023ISBN 978-92-3-100576-3
  22. Dias, M. A. M.; Nitschke, M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz. J.Microbiol. 2023, 54, 103−123.
  23. Kirtil, E.; Oztop, M. H. Mechanism of adsorption for design of role-specific polymeric surfactants. Chem. Pap. 2023
  24. Wokosin, K. A.; Schell, E. L.; Faust, J. A. Emerging investigator series: surfactants, films, and coatings on atmospheric aerosol particles: a review. Environ. Sci. Atmos. 2022, 2 (5), 775−828.
  25. Tato, J. V.; Seijas, J. A.; Vázquez-Tato, M. P.; Meijide, F.; deFrutos, S.; Jover, A.; Fraga, F.; Soto, V. H. Introduction to Biosurfactants. Biosurfactants for a Sustainable Future 2021, 1−42.
  26. Nagtode, V. S., Cardoza, C., Yasin, H. K. A., Mali, S. N., Tambe, S. M., Roy, P., … & Pratap, A. P. (2023). Green surfactants (biosurfactants): a petroleum-free substitute for Sustainability─ Comparison, applications, market, and future prospects. ACS omega, 8(13), 11674-11699.
  27. Li, H., Fang, C., Liu, X., Bao, K., Li, Y., & Bao, M. (2023). Quantitative analysis of biosurfactants in water samples by a modified oil spreading technique. RSC advances, 13(15), 9933-9944
  28. Intasit, R.; Soontorngun, N. Enhanced palm oil-derived sophorolipid production from yeast to generate biodegradable plastic precursors. Ind. Crops Prod. 2023, 192, 116091.
  29. Xu, R.-Q.; Ma, L.; Chen, T.; Zhang, W.-X.; Chang, K.; Wang, J.Sophorolipid inhibits histamine-induced itch by decreasing PLC/IP3R signaling pathway activation and modulating TRPV1 activity. Research

Square, January 5, 2023

  1. Zhang, X.; Wang, Y.; Lu, J.; Liu, M.; Tan, W.; Cheng, Y.; Tao, Y.; Du, J.; Wang, H. Biosurfactant promoted enzymatic saccharification of alkali-pretreated reed straw. Bioresour. Technol. 2023, 372, 128665.
  2. Nascimento, M. F.; Keković, P.; Ribeiro, I. A. C.; Faria, N. T.; Ferreira, F. C. Novel Organic Solvent Nanofiltration Approaches for Microbial Biosurfactants Downstream Processing. Membranes 2023, 13

(1), 81.

  1. Matosinhos, R. D.; Cesca, K.; Carciofi, B. A. M.; de Oliveira, D.;de Andrade, C. J. Mannosylerythritol lipids as green pesticides and plant biostimulants. J. Sci. Food Agric. 2023, 103 (1), 37−47.
  2. Yang, Q.; Shen, L.; Yu, F.; Zhao, M.; Jin, M.; Deng, S.; Long, X. Enhanced fermentation of biosurfactant mannosylerythritol lipids on the pilot scale under efficient foam control with addition of soybean oil.Food Bioprod. Process. 2023, 138, 60−69.
  3. Mawani, J. S.; Mali, S. N.; Pratap, A. P. Formulation and evaluation of antidandruff shampoo using mannosylerythritol lipid (MEL) as a bio-surfactant. Tenside Surfactants Deterg. 2023, 60 (1), 44−53.
  4. de Oliveira Schmidt, V. K.; de Vasconscelos, G. M. D.; Vicente, R.; de Souza Carvalho, J.; Della-Flora, I. K.; Degang, L.; de Oliveira, D.;de Andrade, C. J. Cassava wastewater valorization for the production of biosurfactants: surfactin, rhamnolipids, and mannosileritritol lipids. World J. Microbiol. Biotechnol.2023, 39 (2), 65.
  5. Khalafi, H.; Ahmadi, S. A comparative study of Mannosylerythritol lipids (MELs) surfactant adsorption upon the Al12N12 and B12N12 nano-cages as potential candidates for detecting MELs. J. Indian Chem. Soc. 2023, 100 (1), 100805.
  6. Selva Filho, A. A. P.; Converti, A.; Soares da Silva, R. d. C. F.; Sarubbo, L. A. Biosurfactants as Multifunctional Remediation Agents of Environmental Pollutants Generated by the Petroleum Industry. Energies 2023, 16 (3), 1209.
  7. Johnson, P., Trybala, A., Starov, V., & Pinfield, V. J. (2021). Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in colloid and interface science, 288, 102340.
  8. Pal, S., Chatterjee, N., Das, A. K., McClements, D. J., & Dhar, P. (2023). Sophorolipids: A comprehensive review on properties and applications. Advances in Colloid and Interface Science, 313, 102856.
  9. Zhen, C., Ge, X. F., Lu, Y. T., & Liu, W. Z. (2023). Chemical structure, properties and potential applications of surfactin, as well as advanced strategies for improving its microbial production. AIMS microbiology, 9(2), 195.
  10. Ma, Z., Zuo, P., Sheng, J., Liu, Q., Qin, X., & Ke, C. (2023). Characterization and production of a biosurfactant viscosin from Pseudomonas sp. HN11 and its application on enhanced oil recovery during oily sludge cleaning. Applied Biochemistry and Biotechnology, 1-17.
  11. Soberón-Chávez, G., Lépine, F., & Déziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied microbiology and biotechnology, 68, 718-725.
  12. Twigg, M. S., Baccile, N., Banat, I. M., Déziel, E., Marchant, R., Roelants, S., & Van Bogaert, I. N. (2021). Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 14(1), 147-170.
  13. Gürkök, S., & Özdal, M. (2021). Microbial biosurfactants: properties, types, and production. Anatolian Journal of Biology, 2(2), 7-12.
  14. Guo, P., Xu, W., Tang, S., Cao, B., Wei, D., Zhang, M., … & Li, W. (2022). Isolation and characterization of a biosurfactant producing strain Planococcus sp. XW-1 from the cold marine environment. International journal of environmental research and public health, 19(2), 782.
  15. Voulgaridou, G. P., Mantso, T., Anestopoulos, I., Klavaris, A., Katzastra, C., Kiousi, D. E., … & Pappa, A. (2021). Toxicity profiling of biosurfactants produced by novel marine bacterial strains. International Journal of Molecular Sciences, 22(5), 2383.
  16. Ozdal, S. Gurkok, and O. G. Ozdal, “Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone,” 3 Biotech, vol. 7, no. 2, pp. 1–8, 2017
  17. J. Gudiña, E. C. Fernandes, A. I. Rodrigues, J. A. Teixeira, and L. R. Rodrigues,“Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium,”Front. Microbiol., vol. 6, no. FEB, pp. 1–8, 2015
  18. Yañez-Ocampo, G. Somoza-Coutiño, C. Blanco-González, and A. Wong-Villarreal, “Utilization of ozda waste for biosurfactant production by native bacteria from chiapas,” Open Agric., vol. 2, no. 1, pp. 341–349, 2017,
  19. H. Mouafo, A. Mbawala, and R. Ndjouenkeu, “Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp.,” Biomed Res. Int., vol.2018
  20. O. Oyetibo et al., “Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multi-polluted industrial wastewater creek,” Int. Biodeterior. Biodegrad., vol. 120, pp. 143–151, 2017
  21. George and K. Jayachandran, “Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D,” J. Appl. Microbiol., vol. 114, no. 2, pp. 373–383, 2013
  22. E. Affandi, N. H. Suratman, S. Abdullah, W. A. Ahmad, and Z. A. Zakaria,“Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria,” Int. Biodeterior. Biodegrad., vol. 95, no. PA, pp. 33–40, 2014,
  23. Ndlovu, S. Khan, and W. Khan, “Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant,” Environ. Sci. Pollut. Res., vol. 23, no. 10, pp. 9993–10004, 2016
  24. Vecino, L. Rodríguez-López, E. J. Gudiña, J. M. Cruz, A. B. Moldes, and L. R. Rodrigues, “Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei,” J. Ind. Eng. Chem., vol. 55, pp. 40–49, 2017,
  25. M. Banat, S. K. Satpute, S. S. Cameotra, R. Patil, and N. V. Nyayanit, “Cost effective technologies and renewable substrates for biosurfactants’ production,” Front. Microbiol., vol. 5, no. DEC, pp. 1–19, 2014
  26. B. Patil, Y. A. Patil Sawant, L. H. Kamble, and C. J. Raorane, “Primary Screening of Actinomycetes in prospects with Biosurfactant Production from Animal fat waste,” Int. J. Curr. Microbiol. Appl. Sci., vol. 5, no. 2, pp. 92–97, 2016,
  27. C. Martins and V. G. Martins, “Biosurfactant production from industrial wastes with potential remove of insoluble paint,” Int. Biodeterior. Biodegrad., vol. 127, no. November 2017, pp. 10–16, 2018,
  28. Guo, X. J. Jia, L. Yang, G. Zhang, and L. Zhang, “Effect of biosurfactant on ammonia removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactors,” Environ. Technol. (United Kingdom), vol. 41, no. 19, pp. 2510–2517, Aug. 2020,.
  29. Pourfadakari et al., “Remediation of PAHs contaminated soil using a sequence of soil washing with biosurfactant produced by Pseudomonas aeruginosa strain PF2 and electrokinetic oxidation of desorbed solution, effect of electrode modification with Fe3O4 nanoparticles,” J. Hazard. Mater., vol. 379, no. February, p. 120839, 2019,
  30. He et al., “Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils,” Chemosphere, vol. 242, 2020,
  31. M. M. Ibrahim, “Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oilcontaminated soil,” Egypt. J. Pet., vol. 27, no. 1, pp. 21–29, 2018,
  32. George and K. Jayachandran, “Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D,” J. Appl. Microbiol., vol. 114, no. 2, pp. 373–383, 2013
  33. Alshabib and S. A. Onaizi, “Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives,” Water. Air. Soil Pollut., vol. 231, no. 8, Aug. 2020,
  34. A. Jayalatha and C. P. Devatha, “Degradation of Triclosan from Domestic Wastewater by Biosurfactant Produced from Bacillus licheniformis,” Mol. Biotechnol., vol. 61, no. 9, pp. 674–680, Sep. 2019
  35. Perez-Ameneiro, X. Vecino, J. M. Cruz, and A. B. Moldes, “Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite,” Carbohydr. Polym., vol. 131, pp. 186–196, 2015
  36. C. Natassia, M. G. Benedito, D. G. Simone, P. R. S. Ana, and M. P. Glaucia, “Use of biosurfactant surfactin produced from cassava wastewater for anaerobic treatment of effluent from a poultry slaughterhouse,” African J. Biotechnol., vol. 16, no. 5, pp. 224-231, Feb. 2017,
  37. Vance-Harrop, M. H., Gusmão, N. B. D., & Campos-Takaki, G. M. D. (2003). New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources. Brazilian Journal of Microbiology, 34, 120-123.
  38. Da Rós, P. C., Pereira, T. A., Barbosa, F. G., Marcelino, P. R., & da Silva, S. S. (2024). An Environmentally Friendly Biosurfactant to Enhance the Enzymatic Hydrolysis for Production of Polyunsaturated Fatty Acids with Potential Application as Nutraceutical. Catalysis Letters, 154(2), 708-717.
  39. Valkenburg, A. D., Ncube, M. Z., Teke, G. M., van Rensburg, E., & Pott, R. W. (2024). A review on the upstream production and downstream purification of mannosylerythritol lipids. Biotechnology and Bioengineering, 121(3), 853-876.
  40. Ray, S., Sankhyan, S., Sonkar, M., & Kumar, P. (2023). Role of Biosurfactants in the Remediation of Emerging Pollutants. In Management and Mitigation of Emerging Pollutants(pp. 411-432). Cham: Springer International Publishing.
  41. Liu, Q., Niu, J., Yu, Y., Wang, C., Lu, S., Zhang, S., … & Peng, B. (2021). Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery. Journal of Cleaner Production, 307, 127193.
  42. Shah, V., & Daverey, A. (2021). Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. Journal of cleaner production, 280, 124406.
  43. Sharma, S., Verma, R., Dhull, S., Maiti, S. K., & Pandey, L. M. (2022). Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor. Bioprocess and Biosystems Engineering, 45(2), 309-319.
  44. Machado, T. S., Decesaro, A., Cappellaro, Â. C., Machado, B. S., van Schaik Reginato, K., Reinehr, C. O., … & Colla, L. M. (2020). Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil. Ecotoxicology and Environmental Safety, 201, 110798.
  45. Cazals, F., Huguenot, D., Crampon, M., Colombano, S., Betelu, S., Galopin, N., … & Rossano, S. (2020). Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. Science of the total environment, 709, 136143.
  46. Durval, I. J. B., Mendonça, A. H. R., Rocha, I. V., Luna, J. M., Rufino, R. D., Converti, A., & Sarubbo, L. A. (2020). Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Marine Pollution Bulletin, 157, 111357.
  47. Venkataraman, S., Rajendran, D. S., Kumar, P. S., Vo, D. V. N., & Vaidyanathan, V. K. (2022). Extraction, purification and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: a review. Environmental Chemistry Letters, 1-22.
  48. Wongsirichot, P., Ingham, B., & Winterburn, J. (2021). A review of sophorolipid production from alternative feedstocks for the development of a localized selection strategy. Journal of Cleaner Production, 319, 128727.
  49. Rodríguez, A., Gea, T., & Font, X. (2021). Sophorolipids production from oil cake by solid-state fermentation. Inventory for economic and environmental assessment. Frontiers in Chemical Engineering, 3, 632752.
  50. Da Rocha Junior, R. B., Meira, H. M., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2019). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 30, 215-233.
  51. Huang, X., Zhou, H., Ni, Q., Dai, C., Chen, C., Li, Y., & Zhang, C. (2020). Biosurfactant-facilitated biodegradation of hydrophobic organic compounds in hydraulic fracturing flowback wastewater: A dose–effect analysis. Environmental Technology & Innovation, 19, 100889.
  52. Teja, S. (2021). A Review on Recent Advances in the Application of Biosurfactants in Wastewater Treatment(Doctoral dissertation, Faculty of Chemistry, Gdansk University of Technology, Poland).
  53. Kumar, P. S., Mohanakrishna, G., Hemavathy, R. V., Rangasamy, G., & Aminabhavi, T. M. (2023). Sustainable production of biosurfactants via valorisation of industrial wastes as alternate feedstocks. Chemosphere, 312, 137326.
  54. Fung, K. C., Dornelles, H. S., Varesche, M. B., & Gutierrez, T. (2023). From wastewater treatment plants to the oceans: a review on synthetic chemical surfactants (SCSs) and perspectives on marine-safe biosurfactants. Sustainability, 15(14), 11436.
  55. Sabturani, N., Latif, J., Radiman, S., & Hamzah, A. (2016). Spectroscopic analysis of rhamnolipid produced by produced by Pseudomonas aeruginosa UKMP14T.  J. Anal. Sci, 20, 31-43.
  56. Varnava, C. K., Grenni, P., Mariani, L., Caracciolo, A. B., Hadjipakkou, H., Lefkaritis, G., … & Tsipa, A. (2024). Characterization, production optimization and ecotoxicity of a lipopeptide biosurfactant by Pseudomonas citronellolis using oily wastewater. Biochemical Engineering Journal, 205, 109257.
  57. Liu, Q., Niu, J., Yu, Y., Wang, C., Lu, S., Zhang, S., … & Peng, B. (2021). Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery. Journal of Cleaner Production, 307, 127193.
  58. Wang, H., Gao, R., Song, X., Yuan, X., Chen, X., & Zhao, Y. (2024). Study on the production of Sophorolipid by Starmerella bombicola yeast using fried waste oil fermentation. Bioscience Reports, 44(2), BSR20230345.
  59. Alara, O. R., Abdurahman, N. H., & Ali, H. A. (2024). Biosurfactant production by utilizing waste products of the food industry. In Industrial Applications of Biosurfactants and Microorganisms(pp. 59-77). Academic Press.
  60. Sankhyan, S., Kumar, P., Sonkar, M., Pandit, S., Ranjan, N., & Ray, S. (2024). Characterization of biosurfactant produced through co-utilization of substrates by the novel strain Pseudomonas aeruginosa NG4. Biocatalysis and Agricultural Biotechnology, 55, 102988.
  61. O. Oyetibo et al., “Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multi-polluted industrial wastewater creek,” Int. Biodeterior. Biodegrad., vol. 120, pp. 143–151, 2017,
  62. Negrete, P. S., Ghilardi, C., Pineda, L. R., Perez, E., Herrera, M. L., & Borroni, V. (2024). Biosurfactant production by Rhodococcus ALDO1 isolated from olive mill wastes. Biocatalysis and Agricultural Biotechnology, 103106.
  63. Wong-Villarreal, L. Reyes-Löpez, C. H. González, C. B. González, and G. Yáñez- Ocampo, “Characterization of bacteria isolation of bacteria from pinyon rhizosphere, producing biosurfactants from agro-industrial waste,” Polish J. Microbiol., vol. 65, no. 2 pp. 183–189, 2016
  64. Sajadi Bami, M., Raeisi Estabragh, M. A., Ohadi, M., Banat, I. M., & Dehghannoudeh, G. (2022). Biosurfactants aided bioremediation mechanisms: a mini-review. Soil and Sediment Contamination: An International Journal, 31(7), 801-817.
  65. Mahapatra, M., Pradhan, S., Preetam, S., & Pradhan, A. K. (2024). Role of Biosurfactants in Heavy Metal Removal and Mineral Flotation. In Biotechnological Innovations in the Mineral-Metal Industry(pp. 141-150). Cham: Springer International Publishing.
  66. Qi, S., Roser, S., Edler, K. J., Pigliacelli, C., Rogerson, M., Weuts, I., … & Stokbroekx, S. (2013). Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharmaceutical research, 30, 290-302.
  67. Dasgupta, A., De, D., & Chaudhuri, S. (2024). Anti-biofilm and disinfectant-like activity of pumilacidin, a lipopeptide biosurfactant produced by Bacillus pumilus NITDID1. Biocatalysis and Agricultural Biotechnology, 56, 103024.
  68. Etchepare, R.; Oliveira, H.; Azevedo, A.; Rubio, J. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles. Sep. Purif. Technol. 2017, 186, 326–332.
  69. Wang, C.; Wang, Z.; Wei, X.; Li, X. A numerical study and flotation experiments of bicyclone column flotation for treating of produced water from ASP flooding. J. Water Process Eng. 2019, 32, 100972.
  70. Silva, E.J.; Silva, I.A.; Brasileiro, P.P.; Correa, P.F.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Treatment of oily effluent using a low-cost biosurfactant in a flotation system. Biodegradation 2019, 30, 335–350
  71. Ganesan, N. G., Singh, R. D., Kapila, S., & Rangarajan, V. (2024). The imminent potential of microbial surfactants in PPCP waste removal. In Development in Wastewater Treatment Research and Processes (pp. 309-335). Elsevier.
  72. Patowary, R., Patowary, K., Kalita, M. C., & Deka, S. (2018). Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration & Biodegradation, 129, 50-60.
  73. Prakash, A. A., Prabhu, N. S., Rajasekar, A., Parthipan, P., AlSalhi, M. S., Devanesan, S., & Govarthanan, M. (2021). Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant. Journal of Hazardous Materials, 405, 124061.
  74. Zang, T., Wu, H., Yan, B., Zhang, Y., & Wei, C. (2021). Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. Chemosphere, 266, 128941.
  75. Tang, J., He, J., Liu, T., Xin, X., & Hu, H. (2017). Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere, 189, 599-608.
  76. Huang, H., Li, Z., Ma, Y., Yao, M., Yao, S., Zhang, Z., & Qin, C. (2023). High-performance arabinoglucuronoxylan-based biosurfactants for oily sludge separation. Carbohydrate Polymers, 303, 120461.

 


Regular Issue Subscription Review Article
Volume 11
Issue 02
Received June 26, 2024
Accepted July 9, 2024
Published August 1, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.