A comprehensive review on Sustainable Pathways to Synthesize 2, 5-Furandicarboxylic Acid (FDCA) from 5-Hydroxymethylfurfural (HMF) via Oxidative Processes

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : August 1, 2024 at 10:21 am | [if 1553 equals=””] Volume :11 [else] Volume :11[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 02 | Page : –

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Anand Metre,

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Professor Chemical Engineering Department, M S University, Vadodara Gujarat India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

nThe increasing global concern over the environmental impact of traditional plastics derived from petroleum and natural gas has spurred a search for more sustainable alternatives. Bioplastics, which are derived from renewable sources and may be biodegradable, have garnered significant interest as eco-friendly materials. Among the promising building blocks for bioplastics, 2,5-Furandicarboxylic Acid (FDCA) has emerged due to its potential to enhance polymer properties. One key precursor for bioplastics, 5-Hydroxymethylfurfural (5-HMF), has been identified, and its oxidation to FDCA represents a significant pathway for bioplastic synthesis. Various oxidation processes, employing homogeneous, heterogeneous catalysis, or even without catalysts, have been explored for the synthesis of FDCA from 5-HMF.This review paper focuses on elucidating the recent advancements in the homogeneous and heterogeneous catalytic synthesis of FDCA from 5-HMF. Homogeneous catalysts, such as metal complexes, and heterogeneous catalysts, including metal oxides and supported metal nanoparticles, have been extensively studied and continue to evolve in terms of design and performance for the conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). Homogeneous catalysts offer high selectivity, controlled reaction conditions, and mechanistic insights, with examples including Ru-based complexes and Co and Mn salts. Heterogeneous catalysts provide ease of separation, reusability, and stability, with examples including metal oxides like TiO2 and CeO2, and supported metal nanoparticles like Pt, Pd, and Au. Recent advances focus on bimetallic and multimetallic systems, nano-structuring, surface fictionalization, and green chemistry approaches to enhance catalytic activity, selectivity, and environmental sustainability. Both types of catalysts are crucial for the efficient and sustainable conversion of HMF to FDCA, with ongoing research aimed at meeting industrial and environmental demands. It provides a comprehensive overview of the methodologies, catalysts, reaction conditions, and outcomes associated with these oxidation processes. By summarizing the state-of-the-art in FDCA synthesis, the review aims to contribute to the understanding and development of sustainable pathways for bioplastic production.

n

n

n

Keywords: HMF, FDCA, Bioplastic, Homogeneous and Heterogeneous catalyst, Oxidation.

n[if 424 equals=”Regular Issue”][This article belongs to Emerging Trends in Chemical Engineering(etce)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Emerging Trends in Chemical Engineering(etce)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Anand Metre. A comprehensive review on Sustainable Pathways to Synthesize 2, 5-Furandicarboxylic Acid (FDCA) from 5-Hydroxymethylfurfural (HMF) via Oxidative Processes. Emerging Trends in Chemical Engineering. August 1, 2024; 11(02):-.

n

How to cite this URL: Anand Metre. A comprehensive review on Sustainable Pathways to Synthesize 2, 5-Furandicarboxylic Acid (FDCA) from 5-Hydroxymethylfurfural (HMF) via Oxidative Processes. Emerging Trends in Chemical Engineering. August 1, 2024; 11(02):-. Available from: https://journals.stmjournals.com/etce/article=August 1, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n

n[if 992 not_equal=’Open Access’] [/if 992]nn

n

nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Rahman, M. H., & Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics. J. Clean. Prod., 294, 126218.
  2. Madhumitha Jaganmohan. Annual production of plastics worldwide from 1950 to 2022 (in million metric tons). https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950 . 22/02/2024.
  3. Shrivastava, A. (2018). Plastic properties and testing. Int. Plast. Eng.49.
  4. Mishra, R. K., Maria, H. J., Joseph, K., & Thomas, S. (2017). Basic structural and properties relationship of recyclable microfibrillar composite materials from immiscible plastics blends: An introduction, In Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends.Woodhead Publishing. pp. 1-25. 978-0-08-101991-7
  5. Ahsan Ali, Ali Bahadar, Afrasyab Khan, Khairuddin Sanaullah,,(2022), Role of agricultural waste in recycled plastic bio composites, Recycled Plastic Biocomposites, Woodhead Publishing Series in Composites Science and Engineering, PP.165-194. 978-0-323-88653-6
  6. Venkatachalam, H., & Palaniswamy, R. (2020). Bioplastic world: A review. J. Adv. Sci. Res.,11(03), 43-53.
  7. Alshehrei, F. (2017). Biodegradation of synthetic and natural plastic by microorganisms. J. App. & Env. Microbiol., 5(1), 8-19.
  8. Wei, R., & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum‐based plastics: how far are we? Microb. biotechnol., 10(6), 1308-1322.
  9. Shashi Kant Bhatia, Sachin V. Otari, Jong-Min Jeon, Ranjit Gurav, Yong-Keun Choi, Ravi Kant Bhatia, Arivalagan Pugazhendhi, Vinod Kumar, J. Rajesh Banu, Jeong-Jun Yoon, Kwon-Young Choi, Yung-Hun Yang, Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective, Bioresour. Technol.,326-124733.
  10. Jae Bok Heo, Yong-Suk Lee, Chung-Han Chung (2020), Toward Sustainable Hydroxymethylfurfural Production Using Seaweeds, Trends Biotechnol.,38(5), 487-496.
  11. Xiao Kong, Yifeng Zhu Zhen Fang, Janusz A. Kozinski,  Ian S. Butler,  Lujiang Xu,  He Song and  Xiaojie Wei(2018), Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem.,20, 3657-3682.
  12. Qing-Shan Kong, Xing-Long Li, Hua-Jian Xu, Yao Fu (2020). Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications, Fuel Process Technol., 209, 06528.

13.Bao Chen, Xin Li, Peng Rui , Yuewen Ye , Tongqi Ye , Rulong Zhou , Dongdong Li, James H. Carter  and Graham J. Hutchings(2022), The reaction pathways of 5-hydroxymethylfurfural conversion in a continuous flow reactor using copper catalysts, Catal. Sci. Technol.,12, 3016-3027.

  1. Wang, Y., Wang, H., Kong, X., & Zhu, Y. (2022). Catalytic Conversion of 5‐Hydroxymethylfurfural to High‐Value Derivatives by Selective Activation of C− O, C= O, and C= C Bonds. ChemSusChem, 15(13), e202200421.
  2. Parshetti, G.K, Suryadharma, M.S, Pham, T.P.T, Mahmood, R, Balasubramanian, R. (2015). Heterogeneous catalyst,assisted thermochemical conversion of food waste biomass into 5,hydroxymethylfurfural. Bioresour. Technol.,178, 19–27.
  3. Chen, H. (2014). Chemical composition and structure of natural lignocellulose. Chapter 2. In: Biotechnology of Lignocellulose: Theory and Practice. Springer, The Netherlands. pp. 25–71.
  4. Wang, J., Liu, X., Zhu, J., & Jiang, Y. (2017). Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties. Polymers, 9(9), 305.
  5. Dedes, G., Karnaouri, A., & Topakas, E. (2020). Novel routes in transformation of lignocellulosic biomass to furan platform chemicals: from pretreatment to enzyme catalysis. Catalysts, 10(7), 743-767.
  6. Papageorgiou, G. Z., Papageorgiou, D. G., Terzopoulou, Z., & Bikiaris, D. N. (2016). Production of bio-based 2, 5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J., 83, 202-229.
  7. Eerhart, A.J.J.E, Faaij, A.P.C, Patel, M.K. (2012) Replacing fossil-based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci., 5(4),6407–6422.
  8. Liu, K. J., Zeng, T. Y., Zeng, J. L., Gong, S. F., He, J. Y., Lin, Y. W., … & He, W. M. (2019). Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under neat conditions. Chin. Chem. Lett., 30(12), 2304-2308.
  9. Shen, G., Andrioletti, B., & Queneau, Y. (2020). Furfural and 5-(hydroxymethyl) furfural: Two pivotal intermediates for bio-based chemistry. Curr opin. Green Sustain chem., 26, 100384.
  10. Zou, L., Zheng, Z., Tan, H., Xu, Q., & Ouyang, J. (2020). Synthesis of 2, 5-furandicarboxylic acid by a TEMPO/laccase system coupled with Pseudomonas putida KT2440. RSC advances, 10(37), 21781-21788.
  11. Sajid, M., Zhao, X., & Liu, D. (2018). Production of 2, 5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green chemistry, 20(24), 5427-5453.
  12. Kubota, S. R., & Choi, K. S. (2018). Electrochemical oxidation of 5‐hydroxymethylfurfural to 2, 5‐furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem., 11(13), 2138-2145.
  13. Zhu, B., Chen, C., Huai, L., Zhou, Z., Wang, L., & Zhang, J. (2021). 2, 5-Bis (hydroxymethyl) furan: a new alternative to HMF for simultaneously electrocatalytic production of FDCA and H2 over CoOOH/Ni electrodes. Appl. Catal. B: Environ.297, 120396.
  14. Sheng, Y., Tan, X., Zhou, X., & Xu, Y. (2020). Bioconversion of 5-hydroxymethylfurfural (hmf) to 2, 5-furandicarboxylic acid (fdca) by a native obligate aerobic bacterium, Acinetobacter calcoaceticus NL14. Appl. Biochem.  Biotechnol., 192, 455-465.
  15. Messori, A., Fasolini, A., & Mazzoni, R. (2022). Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bio‐Based Platform 5‐Hydroxymethylfurfural. Chem. Sus. Chem, 15(13), e202200228.
  16. Wei, Z., Li, W., Yuan, F., Sun, W., & Zhao, L. (2022). Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid. Ind. Eng. Chem. Res., 61(50), 18352-18361.
  17. Davis, M. E. (2015). Heterogeneous catalysis for the conversion of sugars into polymers. Top. Catal., 58, 405-409.
  18. Yuan, H., Liu, H., Du, J., Liu, K., Wang, T., & Liu, L. (2020). Biocatalytic production of 2, 5-furandicarboxylic acid: recent advances and future perspectives. Appl. Microbiol. Biotechnol., 104, 527-543.
  19. Chen, G., Wu, L., Fan, H., & Li, B. G. (2018). Highly efficient two-step synthesis of 2, 5-furandicarboxylic acid from fructose without 5-hydroxymethylfurfural (HMF) separation: in situ oxidation of HMF in alkaline aqueous H2O/DMSO mixed solvent under mild conditions. Ind. Eng. Chem. Res., 57(48), 16172-16181.
  20. Gawade, A. B., Nakhate, A. V., & Yadav, G. D. (2018). Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst. Catal. Today, 309, 119-125.

34.Han, X., Li, C., Liu, X., Xia, Q., & Wang, Y. (2017). Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over MnO x–CeO 2 composite catalysts. Green Chem., 19(4), 996-1004. 35.Chen, G., Wu, L., Fan, H., & Li, B. G. (2018). Highly efficient two-step synthesis of 2, 5-furandicarboxylic acid from fructose without 5-hydroxymethylfurfural (HMF) separation: in situ oxidation of HMF in alkaline aqueous H2O/DMSO mixed solvent under mild conditions. Ind. Eng. Chem. Res., 57(48), 16172-16181. 36.Yan, D., Xin, J., Zhao, Q., Gao, K., Lu, X., Wang, G., & Zhang, S. (2018). Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2, 5-FDCA as a bio-based polyester monomer. Catal. Sci. Technol., 8(1), 164-175. 37.Lokhande, P., Sonone, K., & Dhepe, P. L. (2023). Industry-oriented method for the aqueous phase oxidation of crude 5-hydroxymethyl furfural (HMF) to 2, 5-furandicarboxylic acid (FDCA). New J Chem., 47(32), 15325-15335. 38.Tirsoaga, A., El Fergani, M., Nuns, N., Simon, P., Granger, P., Parvulescu, V. I., & Coman, S. M. (2020). Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Appl. Catal. B: Environ., 278, 119309. 39.Kim, M., Su, Y., Fukuoka, A., Hensen, E. J., & Nakajima, K. (2018). Aerobic Oxidation of 5‐(Hydroxymethyl) furfural Cyclic Acetal Enables Selective Furan‐2, 5‐dicarboxylic Acid Formation with CeO2‐Supported Gold Catalyst. Angew. Chem., Int. Ed., 57(27), 8235-8239. 40.Chen, L., Zhuang, W., Lan, J., Liu, X., Jiang, S., Wang, L., … & Wang, J. (2021). Base-free atmospheric O2-mediated oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic acid triggered by Mg-bearing MTW zeolite supported Au nanoparticles. Appl. Catal. A Gen, 616, 118106.

  1. Ban, H., Zhang, Y., Chen, S., Cheng, Y., Pan, T., Wang, L., & Li, X. (2020). Production of 2, 5-furandicarboxylic acid by optimization of oxidation of 5-methyl furfural over homogeneous Co/Mn/Br catalysts. ACS Sustain Chem. Eng., 8(21), 8011-8023.
  2. Mittal, N., Kaur, M., & Singh, V. (2023). Mild and selective catalytic oxidation of 5-HMF to 2, 5-FDCA over metal loaded biomass derived graphene oxide using hydrogen peroxide in aqueous media. Mol. Catal., 546, 113223.
  3. Herlina, I., Krisnandi, Y. K., & Ridwan, M. (2024). Oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over CuO and NiO modified natural sourced hierarchical ZSM-5. S. Afr. J. Chem. Eng., 47(1), 75-82.
  4. Zhang, S., Yang, Y., Chu, G., Wang, S., Wang, C., Zhang, Y & Mei, J. (2023). Surface chemistry regulation on particle-support interaction of ruthenium and Cr-Fe oxides for selective oxidation of 5-hydroxymethylfurfural. J. Chem. Eng., 474, 145670.
  5. Tirsoaga, A., El Fergani, M., Nuns, N., Simon, P., Granger, P., Parvulescu, V. I., & Coman, S. M. (2020). Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Appl. Catal. B-Environ., 278, 119309.
  6. Kim, M., Su, Y., Fukuoka, A., Hensen, E. J., & Nakajima, K. (2018). Aerobic oxidation of 5‐(hydroxymethyl) furfural cyclic acetal enables selective furan‐2, 5‐dicarboxylic acid formation with CeO2‐supported gold catalyst. Angew. Chem., Int. Ed., 57(27), 8235-8239.
  7. Motagamwala, A. H., Won, W., Sener, C., Alonso, D. M., Maravelias, C. T., & Dumesic, J. A. (2018). Toward biomass-derived renewable plastics: Production of 2, 5-furandicarboxylic acid from fructose. Sci. Adv., 4(1), eaap9722.
  8. Kar, S., Zhou, Q. Q., Ben-David, Y., & Milstein, D. (2022). Catalytic furfural/5-hydroxymethyl furfural oxidation to furoic acid/furan-2, 5-dicarboxylic acid with H2 production using alkaline water as the formal oxidant. J. Am. Chem. Soc., 144(3), 1288-1295.
  9. Chen, G., Wu, L., Fan, H., & Li, B. G. (2018). Highly efficient two-step synthesis of 2, 5-furandicarboxylic acid from fructose without 5-hydroxymethylfurfural (HMF) separation: in situ oxidation of HMF in alkaline aqueous H2O/DMSO mixed solvent under mild conditions. Ind. Eng. Chem. Res., 57(48), 16172-16181.
  10. Jensen, M. H., & Riisager, A. (2020). Advances in the synthesis and application of 2, 5-furandicarboxylic acid. Biomass, Biofuels, Biochemicals, (1)135-170.
  11. S.S. Stahl, A.B. Powell, T.W. Root, D.S. Mannel, M.S. Ahmed (2017). Conversion of Alcohols to Alkyl Esters and Carboxylic Acids Using Heterogeneous Palladium based Catalysts. U.S. Patent 9,593,064.
  12. Rathod, P. V., & Jadhav, V. H. (2018). Efficient method for synthesis of 2, 5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions. ACS Sustain Chem Eng., 6(5), 5766-5771.
  13. Gupta, K., Rai, R. K., Dwivedi, A. D., & Singh, S. K. (2017). Catalytic Aerial Oxidation of Biomass‐Derived Furans to Furan Carboxylic Acids in Water over Bimetallic Nickel–Palladium Alloy Nanoparticles. Chem. Ca.t Chem., 9(14), 2760-2767.
  14. Wang, S., Zhang, Z., & Liu, B. (2015). Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3O4–CoO x magnetite nanocatalyst. ACS Sustain Chem Eng.3(3), 406-412.
  15. Yan, D., Xin, J., Zhao, Q., Gao, K., Lu, X., Wang, G., & Zhang, S. (2018). Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2, 5-FDCA as a bio-based polyester monomer. Catal. Sci. Technol., 8(1), 164-175.

56.G. Grabowski, G., Lewkowski, J., & Skowroński, R. (1991). The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim. Acta, 36(13), 1995.

  1. Vuyyuru, K. R., & Strasser, P. (2012). Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today, 195(1), 144-154.
  2. Chadderdon, D. J., Xin, L., Qi, J., Qiu, Y., Krishna, P., More, K. L., & Li, W. (2014). Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem., 16(8), 3778-3786.
  3. Kubota, S. R., & Choi, K. S. (2018). Electrochemical oxidation of 5‐hydroxymethylfurfural to 2, 5‐furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem, 11(13), 2138-2145.
  4. Barwe, S., Weidner, J., Cychy, S., Morales, D. M., Dieckhöfer, S., Hiltrop, D., … & Schuhmann, W. (2018). Electrocatalytic oxidation of 5‐(hydroxymethyl) furfural using high‐surface‐area nickel boride. Angew. Chem. Int. Ed., 57(35), 11460-11464.
  5. Xu, S., Zhou, P., Zhang, Z., Yang, C., Zhang, B., Deng, K., … & Zhu, H. (2017). Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc., 139(41), 14775-14782.
  6. Han, G., Jin, Y. H., Burgess, R. A., Dickenson, N. E., Cao, X. M., & Sun, Y. (2017). Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc., 139(44), 15584-15587.
  7. Cha, H. G., & Choi, K. S. (2015). Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem., 7(4), 328-333.

64.F. Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid. Bioresour. Technol., 101(16), 6291-6296.

  1. Dijkman, W. P., Groothuis, D. E., & Fraaije, M. W. (2014). Enzyme‐catalyzed oxidation of 5‐hydroxymethylfurfural to furan, 2, 5‐dicarboxylic acid. Angew. Chem. Int. Ed., 53(25), 6515-6518.
  2. Carro, J., Ferreira, P., Rodríguez, L., Prieto, A., Serrano, A., Balcells, B., … & Martínez, A. T. (2015). 5‐hydroxymethylfurfural conversion by fungal aryl‐alcohol oxidase and unspecific peroxygenase. Febs. J., 282(16), 3218-3229.
  3. Qin, Y. Z., Li, Y. M., Zong, M. H., Wu, H., & Li, N. (2015). Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2, 5-diformylfuran using deep eutectic solvents. Green Chem., 17(7), 3718-3722.
  4. Wang, K. F., Liu, C. L., Sui, K. Y., Guo, C., & Liu, C. Z. (2018). Efficient catalytic oxidation of 5‐hydroxymethylfurfural to 2, 5‐furandicarboxylic acid by magnetic laccase catalyst. Chem. Bi.o Chem., 19(7), 654-659.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Subscription Original Research

n

n

n

n

n

Emerging Trends in Chemical Engineering

n

[if 344 not_equal=””]ISSN: 2349-4786[/if 344]

n

n

n

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 11
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 02
Received June 26, 2024
Accepted July 17, 2024
Published August 1, 2024

n

n

n

n

n

n nfunction myFunction2() {nvar x = document.getElementById(“browsefigure”);nif (x.style.display === “block”) {nx.style.display = “none”;n}nelse { x.style.display = “Block”; }n}ndocument.querySelector(“.prevBtn”).addEventListener(“click”, () => {nchangeSlides(-1);n});ndocument.querySelector(“.nextBtn”).addEventListener(“click”, () => {nchangeSlides(1);n});nvar slideIndex = 1;nshowSlides(slideIndex);nfunction changeSlides(n) {nshowSlides((slideIndex += n));n}nfunction currentSlide(n) {nshowSlides((slideIndex = n));n}nfunction showSlides(n) {nvar i;nvar slides = document.getElementsByClassName(“Slide”);nvar dots = document.getElementsByClassName(“Navdot”);nif (n > slides.length) { slideIndex = 1; }nif (n (item.style.display = “none”));nArray.from(dots).forEach(nitem => (item.className = item.className.replace(” selected”, “”))n);nslides[slideIndex – 1].style.display = “block”;ndots[slideIndex – 1].className += ” selected”;n}n”}]

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.