JoMCCT

Domino Reaction for the Synthesis of Nitroolefin Heterocyclic Compound Via Thiazole Formation Followed by Claisen Rearrangement

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0A.R.N. Vaishnavi,

[/foreach]
nJanuary 7, 2023 at 11:13 am

n

nAbstract

n

The Baylis-Hillman adducts derived from nitroolefins have been conveniently transformed into Claisen rearrangement. These substances, which include benzothiazole moiety, are very biologically reactive substances. This novel nitro derivative of 2-((E)-2-nitro-3-phenylallyloxy)-3-ethoxybenzaldehyde was simply treated with mole percentage of 2-(2-(2-aminophenyl) disulfanyl) benzenamine in melt reactive condition. Hence this novel 2-(benzo[d]thiazol-2-yl)-6-ethoxy-4-((E)-2-nitro-3-phenylallyl)phenol core unit compounds was very intrusting and new opportunities for the preparation of closely related to the different [3,3] sigmatropic rearrangements related to the Claisen rearrangement molecule. In situ production of a monomer succeeded from an intramolecular [4 + 2] cycloaddition reaction have been shown to be a solid-state melt reaction (SSMR) for the manufacturing of tetracyclic chromenopyran pyrimidinedione frameworks employing Baylis-Hillman derivatives. High stereoselectivity and stereospecificity were used to create the tetracyclic frameworks without the need of a catalyst or solvent. The isolated yield is very good, and the pure product can be obtained without using column chromatography for purification.

n

n

n

n

Volume :u00a0u00a013 | Issue :u00a0u00a02 | Received :u00a0u00a0August 5, 2022 | Accepted :u00a0u00a0August 16, 2022 | Published :u00a0u00a0August 30, 2022n[if 424 equals=”Regular Issue”][This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Domino Reaction for the Synthesis of Nitroolefin Heterocyclic Compound Via Thiazole Formation Followed by Claisen Rearrangement under section in Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424]
Keywords Nitroolefins, baylis-hillman adducts, claisen rearrangement, ethoxybenzaldehyde, disulfanylbenzenamine, (phenylallyl) phenol

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Kita, M. Hirayama, Y. Yamagishi, K. Yoneda, K. Fujisawa, R. Kigoshi, H.J. Am. Chem. Soc. 2012; 134. 20314.
2. (a)Lee,Y.R. Hung T.V. Tetrahedron 2008;64. 7338. (b). Majumdar, K. C.; Taher, A.; Nandi, R.; Tetrahedron. 2012; 68.5693.
3. Arora, R.B. Mathur C. N. Brit. J. Pharmacol. 1963. 20. 29.
4. Sardari, S.Mori .Y. Horita K.Micetich R.G.; Nishibe S. Daneshtalab M. Bioorg. Med. Chem. 1999; 7. 1933.
5. Rajesh, P.M.Natvar P.J.J. Ad. Pharm Ed & Res, 2011; 1.52.
6. (a) Kashman, Y. Gustafson K.R. Fuller R.W. Cardellina J.H. McMahon J. et al Med. Chem. 1992;35.2735. (b) Lacy A. O’Kennedy, R. Curr. Pharm. Des. 2004;10.3797.
7. Appendino G. Cravotto G. Minassi A. Palmisano G. Eur. J. Org. Chem. 2001; 3711.
8. Appendino G. Cravotto G. Toma L. Annunziata R. Palmisano G.J. Org. Chem.1994;59.5556.
9. Mahmoud, A.A. Ahmed, A.A. Iinuma, M. Tanaka T. Phytochemistry 1998; 48. 543.
10. Mulholland D.A. Iourine S.E. Taylor D.A.H. Dean F.M. Phytochemistry 1998; 47. 1641.
11. Wang Y.Huang S,X.Xia P.Xia Y.Yang Z.Y. Kilgore N. Morris-Natschke S.L. Lee K.H. Bioorg. Med. Chem. Lett. 2007;17. 4316.
12. Elomri A. Michel, S. Skaltsounis A.L. Tillequin F. Koch, M. Pierre A. Guilbaud N. Leonce, S. Kraus L. Rolland Y. Atassi G. J. Med. Chem. 1996; 39.4762.
13. Magiatis P.M.S. Skaltsounis A.L. Tillequin F. Koch M. Pierre A. Atassi G. Chem. Pharm. Bull. 1999;47. 611.
14. (a) Ziegler F.E. Chem. ReV. 1988; 88. 1423. (b) Castro, A.M.M. Chem. ReV. 2004; 104.2939. (c). The Claisen Rearrangement Hiersemann M. Nubbemeyer U. Eds. Wiley-VCH: Weinheim Germany. 2007.
15. Guz N.R. Lorenz P. Stermitz F.R. Tetrahedron Lett. 2001;42. 6491.

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Journal of Modern Chemistry & Chemical Technology

ISSN: 2229-6999

Editors Overview

jomcct maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    A.R.N. Vaishnavi

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar,Department of Chemistry, Government Arts College for men, Chennai-35, Nandhanam,Tamil Nadu,India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nThe Baylis-Hillman adducts derived from nitroolefins have been conveniently transformed into Claisen rearrangement. These substances, which include benzothiazole moiety, are very biologically reactive substances. This novel nitro derivative of 2-((E)-2-nitro-3-phenylallyloxy)-3-ethoxybenzaldehyde was simply treated with mole percentage of 2-(2-(2-aminophenyl) disulfanyl) benzenamine in melt reactive condition. Hence this novel 2-(benzo[d]thiazol-2-yl)-6-ethoxy-4-((E)-2-nitro-3-phenylallyl)phenol core unit compounds was very intrusting and new opportunities for the preparation of closely related to the different [3,3] sigmatropic rearrangements related to the Claisen rearrangement molecule. In situ production of a monomer succeeded from an intramolecular [4 + 2] cycloaddition reaction have been shown to be a solid-state melt reaction (SSMR) for the manufacturing of tetracyclic chromenopyran pyrimidinedione frameworks employing Baylis-Hillman derivatives. High stereoselectivity and stereospecificity were used to create the tetracyclic frameworks without the need of a catalyst or solvent. The isolated yield is very good, and the pure product can be obtained without using column chromatography for purification.n

n

n

Keywords: Nitroolefins, baylis-hillman adducts, claisen rearrangement, ethoxybenzaldehyde, disulfanylbenzenamine, (phenylallyl) phenol

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Kita, M. Hirayama, Y. Yamagishi, K. Yoneda, K. Fujisawa, R. Kigoshi, H.J. Am. Chem. Soc. 2012; 134. 20314.
2. (a)Lee,Y.R. Hung T.V. Tetrahedron 2008;64. 7338. (b). Majumdar, K. C.; Taher, A.; Nandi, R.; Tetrahedron. 2012; 68.5693.
3. Arora, R.B. Mathur C. N. Brit. J. Pharmacol. 1963. 20. 29.
4. Sardari, S.Mori .Y. Horita K.Micetich R.G.; Nishibe S. Daneshtalab M. Bioorg. Med. Chem. 1999; 7. 1933.
5. Rajesh, P.M.Natvar P.J.J. Ad. Pharm Ed & Res, 2011; 1.52.
6. (a) Kashman, Y. Gustafson K.R. Fuller R.W. Cardellina J.H. McMahon J. et al Med. Chem. 1992;35.2735. (b) Lacy A. O’Kennedy, R. Curr. Pharm. Des. 2004;10.3797.
7. Appendino G. Cravotto G. Minassi A. Palmisano G. Eur. J. Org. Chem. 2001; 3711.
8. Appendino G. Cravotto G. Toma L. Annunziata R. Palmisano G.J. Org. Chem.1994;59.5556.
9. Mahmoud, A.A. Ahmed, A.A. Iinuma, M. Tanaka T. Phytochemistry 1998; 48. 543.
10. Mulholland D.A. Iourine S.E. Taylor D.A.H. Dean F.M. Phytochemistry 1998; 47. 1641.
11. Wang Y.Huang S,X.Xia P.Xia Y.Yang Z.Y. Kilgore N. Morris-Natschke S.L. Lee K.H. Bioorg. Med. Chem. Lett. 2007;17. 4316.
12. Elomri A. Michel, S. Skaltsounis A.L. Tillequin F. Koch, M. Pierre A. Guilbaud N. Leonce, S. Kraus L. Rolland Y. Atassi G. J. Med. Chem. 1996; 39.4762.
13. Magiatis P.M.S. Skaltsounis A.L. Tillequin F. Koch M. Pierre A. Atassi G. Chem. Pharm. Bull. 1999;47. 611.
14. (a) Ziegler F.E. Chem. ReV. 1988; 88. 1423. (b) Castro, A.M.M. Chem. ReV. 2004; 104.2939. (c). The Claisen Rearrangement Hiersemann M. Nubbemeyer U. Eds. Wiley-VCH: Weinheim Germany. 2007.
15. Guz N.R. Lorenz P. Stermitz F.R. Tetrahedron Lett. 2001;42. 6491.

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Journal of Modern Chemistry & Chemical Technology

n

[if 344 not_equal=””]ISSN: 2229-6999[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 13
Issue 2
Received August 5, 2022
Accepted August 16, 2022
Published August 30, 2022

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More
JoMCCT

Synthesis of Green Nanoparticles for Degradation of Cellulose

[{“box”:0,”content”:”

nn

n

    By  [foreach 286]n

  1. n

    Arnav Walia

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n

  1. Research Trainee,Amity Institute of Biotechnology, Amity university,Uttar pradesh,India
  2. n [/if 1175][/foreach]

n

n

n

n

n

Abstract

n Late advances in nano-science and technology have also prompted the advance of novel nanomaterials, which eventually increment potential eudaimonia and ecological perils. Enthusiasm for growing Earth’s thoughtful ways for the mix of auriferous nanoparticles has been enlarged. The intention is to limit the negative effects of the designed methodology with artificial compounds and subordinate mixes. The abuse of assorted biomaterials for the mix of nanoparticles is a profitable methodology in inexperienced technology. Natural assets, for example, microbes, inexperienced growth organisms and plants, generate ease, vitality effective, and nontoxic ecological agreeable auriferous nanoparticles. This survey offers a review of various reports of inexperienced amalgamated zero valent auriferous iron (ZVMI) and iron compound (Fe2O3/Fe3O4) nanoparticles (N.P.s) and options for their generous applications in natural contamination management. This audit also condenses the Ecotoxicological effects of inexperienced combined iron nanoparticles contradicting non-green integrated iron nanoparticles. Green Nanoparticles using the science of nanotechnology branch are then modernized in research. This review paper discusses the various bio-Nano components, such as bio-polymers, polysaccharides, Cellulose, and ion usage. These aspects thus help in the larger umbrella study of green Nanoparticles. So likewise, the research and the usage of green Nanoparticles in the parallel study papers are considered. Also, the green Nanobacteria, the occurring biological resources of the green Nano study, are briefed by the author in this review as they are also the promoting agents in various molecular level natural changes. So, all in all, this paper briefly explains the niche and details more about nanotechnology and green Nano particle linkage and how they interact on the molecular level.n

n

n

Keywords: Nano-particles, Auriferous iron, Bio-polymer, Polysaccharide, Cellulose

n [if 424 equals=”Regular Issue”][This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)]

n [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424]

n

n

n


n [if 992 equals=”Subscription”]n

n

n

Full Text

n

n

n n [/if 992]n [if 992 not_equal=”Subscription”]n

n

Full Text

n

n

n

n


[/if 992]n [if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n [/foreach]

n

[/if 379]n

n

References

n [if 1104 equals=””]

1. Roy A. Bulut O.Some S. et al. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. 2019;9(5):2673–702. Available from: http://xlink.rsc.org/?DOI=C8RA08982E
2. Ishida M. Romero R. Leisen M. et al. Auriferous pyrite formed by episodic fluid inputs in the Akeshi and Kasuga high-sulfidation deposits, Southern Kyushu. Japan. Miner Depos [Internet]. 2022 ;57(1):129–45. Available from: https://link.springer.com/10.1007/s00126-021-01053-4
3. Ijaz M. Zafar M. Iqbal T. Green synthesis ofsilver nanoparticles by using various extracts: a review. Inorg Nano-Metal Chem. 2021;51(5):744–55. Available from: https://www.tandfonline.com/doi/full/10.1080/24701556.2020.1808680
4. Kanwar R.Rathee J. Salunke DB. Mehta SK. Green Nanotechnology-Driven Drug Delivery Assemblies. ACS Omega [Internet]. 2019 ;4(5):8804–15. Available from: https://pubs.acs.org/doi/10.1021/acsomega.9b00304
5. Zhang D. Ma X.Gu Y.Huang H. Zhang G. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem [Internet]. 2020;8. Available from: https://www.frontiersin.org/articles/10.3389/fchem.2020.00799/full
6. Ovais M. Khalil AT. Raza A. et al. Multifunctional theranostic applications of biocompatible green- synthesized colloidal nanoparticles. Appl Microbiol Biotechnol [Internet]. 2018;102(10):4393– 408. Available from http://link.springer.com/10.1007/s00253-018-8928-2
7. Palem RR.Ganesh SD. Kronekova Z. Sláviková M. Saha N. Saha P. Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity. Bull Mater Sci [Internet]. 2018 ;41(2):55. Available from: http://link.springer.com/10.1007/s12034-018-1567-5
8. Farazin A.Mohammadimehr M. Ghasemi AH. Naeimi H. Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag 2 O/SiO 2 and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Adv [Internet]. 2021;11(52):32775– 91. Available from: http://xlink.rsc.org/?DOI=D1RA05153A
9. Skiba MI.Vorobyova VI.Pivovarov A. Makarshenko NP. Green Synthesis of Silver Nanoparticles in the Presence of Polysaccharide: Optimization and Characterization. J Nanomater [Internet]. 2020 ;2020:1–10. Available from: https://www.hindawi.com/journals/jnm/2020/3051308/
10. Ogundare SA. van Zyl WE. Amplification of SERS “hot spots” by silica clustering in a silver- nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2019 Jun;570:156–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775719302079
11. Dong R. Li Y. Li W. Zhang H. Liu Y. Ma L. et al. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. J Rare Earths [Internet]. 2019;37(9):903–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S100207211830930X
12. Sharif HMA.Mahmood A. Cheng H-Y.Djellabi R.Ali J.Jiang W-L.et al. Fe 3 O 4 Nanoparticles Coated with EDTA and Ag Nanoparticles for the Catalytic Reduction of Organic Dyes from Wastewater. ACS Appl Nano Mater [Internet]. 2019;2(8):5310–9. Available from: https://pubs.acs.org/doi/10.1021/acsanm.9b01250
13. Rambabu K. Bharath G. Banat F.Show PL. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment.J Hazard Mater [Internet]. 2021;402:123560. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389420315466
14. Happy Agarwal.Soumya Menon.Venkat Kumar S. et al Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact [Internet]. 2018;286:60–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009279717312103
15. Jacob JM. Ravindran R. Narayanan M. et al Microalgae: A prospective low cost green alternative for nanoparticle synthesis. Curr Opin Environ Sci Heal [Internet]. 2021:100163. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468584419300388
16. Huang X.El-Sayed IH. Qian W.El-Sayed MA. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J Am Chem Soc [Internet]. 2006 ;128(6):2115– 20. Available from: https://pubs.acs.org/doi/10.1021/ja057254a
17. Kim JS. Kuk E.Yu KN. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology, Biol Med [Internet]. 2007;3(1):95–101. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1549963406003467
18. Laurent S. Forge D. Port M. et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem Rev [Internet]. 2008;108(6):2064–110. Available from: https://pubs.acs.org/doi/10.1021/cr068445e”

n [/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n [/foreach]

n [/if 1104]

n


n [if 1114 equals=”Yes”]n

n [/if 1114]n

n

Regular Issue Open Access Article

n

n

n

n

n

Journal of Modern Chemistry & Chemical Technology

n

[if 344 not_equal=””]ISSN: 2229-6999[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 13
Issue 2
Received August 8, 2022
Accepted August 24, 2022
Published August 30, 2022

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n

n

“}]

Read More
JoMCCT

Synthesis and Evaluation of New Coumarin Derivatives for Inflammatory Bowel Disease Against DSS-Induced Acute Ulcerative Colitis Mice Model

[{“box”:0,”content”:”

n

n

 > 

n

n

 > 

n

n

n

n

n

n

n

By [foreach 286]u00a0

u00a0Priyanka Bajpai, Om Prakash, Amresh Gupta, Chandra Bhushan Tripathi,

[/foreach]
nJanuary 7, 2023 at 10:33 am

n

nAbstract

n

Objective: The discovery of the now numerous mouse models of intestinal inflammation has increased our understanding of the intestinal inflammation that occurs in inflammatory bowel disorders (IBD). This study aimed to investigate the use of a standardized animal model subjected to coumarin derivative treatment, and the action of synthesized molecule administration of dextran sodium sulphate (DSS)- induced colitis in experimental mice. Materials and Methods: We generated a variety of unique coumarin derivatives throughout this study. Substituted benzoyl chloride was used to make coumarin derivatives such substituted 2-Ethoxy-2H-chromene and substituted 1-Methoxy-isochroman. 1H-NMR was used to confirm the chemical structures of the produced substances. However, the DSS-induced colitis animal model has some merits when compared to other similar in vivo experimental models of colitis. Because of its simplicity, it is a well-liked and commonly utilized model of inflammatory bowel disease. Results: Despite its ease of use and broad applicability, the DSS model has significant flaws that must be avoided. Several risk variables may increase sensitivity to DSS-induced lesions and alter the findings, according to the current research. Conclusion: Our findings suggest that the majority of novel coumarin derivatives met the in vivo criteria for orally active drugs, indicating that they could be promising candidates for developing more potent and effective IBD drugs.

n

n

n

n

Volume :u00a0u00a013 | Issue :u00a0u00a01 | Received :u00a0u00a0April 5, 2022 | Accepted :u00a0u00a0April 26, 2022 | Published :u00a0u00a0April 29, 2022n[if 424 equals=”Regular Issue”][This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue Synthesis and Evaluation of New Coumarin Derivatives for Inflammatory Bowel Disease Against DSS-Induced Acute Ulcerative Colitis Mice Model under section in Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424]
Keywords Inflammatory Bowel Disease, Coumarin, Crohn’s Disease, Ulcerative Colitis, DSSinduced colitis

n

n

n

n

n


n[if 992 equals=”Transformative”]

n

n

Full Text

n

n

n

[/if 992][if 992 not_equal=”Transformative”]

n

n

Full Text

n

n

n

[/if 992] n


nn

[if 379 not_equal=””]n

[foreach 379]n

n[/foreach]

n[/if 379]

n

References

n[if 1104 equals=””]n

1. Roig J, Saiz ML, Galiano A, Trelis M, Cantalapiedra F, Monteagudo C et al. Extracellular vesicles from the helminth Fasciola hepatica Prevent DSS-induced acute ulcerative colitis in a T- lymphocyte independent mode. Front Microbiol. 2018;9:1036. doi: 10.3389/fmicb.2018.01036.
2. Lo Sasso G, Phillips BW, Sewer A, Battey JND, Kondylis A, Talikka M et al. The reduction of DSS-induced colitis severity in mice exposed to cigarette smoke is linked to immune modulation and microbial shifts. Sci Rep. 2020;10(1):3829. doi: 10.1038/s41598–020–60175–3.
3. Burisch J, Jess T, Martinato M, Lakatos PL, ECCO -EpiCom. The burden of inflammatory bowel disease in Europe. J Crohns Colitis. 2013;7(4):322–37. doi: 10.1016/j.crohns.2013.01.010.
4. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. doi: 10.1038/nature01322.
5. Lin JY, Tang CY. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem. 2008;107(4):1587–96. doi: 10.1016/j.foodchem.2007.10.025.
6. Feldmann M, Brennan FM, Foxwell BM, Maini RN. The role of TNF alpha and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:188–99. doi: 10.1159/000060522.
7. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol Ther. 2008;117(2):244–79. doi: 10.1016/j.pharmthera.2007.10.001.
8. Kayal G, Jain K, Malviya S, Kharia A. Comparative SAR of synthetic coumarin derivatives for their anti-inflammatory activity. Int J Pharm Sci Res. 2014;5(9):3577–83.
9. Gancarcikova S, Lauko S, Hrckova G, Andrejcakova Z, Hajduckova V, Madar M et al. Innovative animal model of DSS-induced ulcerative colitis in pseudo-Germ-free mice. Cells. 2020 Dec 1;9(12):2571. doi: 10.3390/cells9122571.
10. Li H, Chen X, Liu J, Chen M, Huang M, Huang G et al. Ethanol extract of Centella asiatica alleviated dextran sulfate sodium-induced colitis: restoration on mucosa barrier and gut microbiota homeostasis. J Ethnopharmacol. 2021 Mar 1; 267:113445. doi: 10.1016/j.jep.2020.113445.
11. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1–2):15– 30. doi: 10.1016/j.mrrev.2008.03.002.
12. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem. 2005;12(8):887–916. doi: 10.2174/0929867053507315.”

nn[/if 1104] [if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””], [/if 1106]
  2. n[/foreach]

n[/if 1104]

n[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=”Regular Issue”] Regular Issue[/if 424] Open Access Article

n

Journal of Modern Chemistry & Chemical Technology

ISSN: 2229-6999

Editors Overview

jomcct maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

n

“},{“box”:4,”content”:”

n“},{“box”:1,”content”:”

    By  [foreach 286]n

  1. n

    Priyanka Bajpai, Om Prakash, Amresh Gupta, Chandra Bhushan Tripathi

    n

  2. [/foreach]

n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Assistant Professor, Associate Professor,Department of Pharmacology, Sherwood College of Pharmacy, Department of Pharmacognosy, Goel Institute of Pharmacy and Sciences,Uttar Pradesh, Uttar Pradesh,India, India
  2. n[/if 1175][/foreach]

n

n

n

n

n

Abstract

nObjective: The discovery of the now numerous mouse models of intestinal inflammation has increased our understanding of the intestinal inflammation that occurs in inflammatory bowel disorders (IBD). This study aimed to investigate the use of a standardized animal model subjected to coumarin derivative treatment, and the action of synthesized molecule administration of dextran sodium sulphate (DSS)- induced colitis in experimental mice. Materials and Methods: We generated a variety of unique coumarin derivatives throughout this study. Substituted benzoyl chloride was used to make coumarin derivatives such substituted 2-Ethoxy-2H-chromene and substituted 1-Methoxy-isochroman. 1H-NMR was used to confirm the chemical structures of the produced substances. However, the DSS-induced colitis animal model has some merits when compared to other similar in vivo experimental models of colitis. Because of its simplicity, it is a well-liked and commonly utilized model of inflammatory bowel disease. Results: Despite its ease of use and broad applicability, the DSS model has significant flaws that must be avoided. Several risk variables may increase sensitivity to DSS-induced lesions and alter the findings, according to the current research. Conclusion: Our findings suggest that the majority of novel coumarin derivatives met the in vivo criteria for orally active drugs, indicating that they could be promising candidates for developing more potent and effective IBD drugs.n

n

n

Keywords: Inflammatory Bowel Disease, Coumarin, Crohn’s Disease, Ulcerative Colitis, DSSinduced colitis

n[if 424 equals=”Regular Issue”][This article belongs to Journal of Modern Chemistry & Chemical Technology(jomcct)]

n[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in Journal of Modern Chemistry & Chemical Technology(jomcct)] [/if 424]

n

n

n


n[if 992 equals=”Transformative”]n

n

n

Full Text

n

n

nn[/if 992]n[if 992 not_equal=”Transformative”]n

n

Full Text

n

n

n

n


[/if 992]n[if 379 not_equal=””]

Browse Figures

n

n

[foreach 379]n

n[/foreach]

n

[/if 379]n

n

References

n[if 1104 equals=””]

1. Roig J, Saiz ML, Galiano A, Trelis M, Cantalapiedra F, Monteagudo C et al. Extracellular vesicles from the helminth Fasciola hepatica Prevent DSS-induced acute ulcerative colitis in a T- lymphocyte independent mode. Front Microbiol. 2018;9:1036. doi: 10.3389/fmicb.2018.01036.
2. Lo Sasso G, Phillips BW, Sewer A, Battey JND, Kondylis A, Talikka M et al. The reduction of DSS-induced colitis severity in mice exposed to cigarette smoke is linked to immune modulation and microbial shifts. Sci Rep. 2020;10(1):3829. doi: 10.1038/s41598–020–60175–3.
3. Burisch J, Jess T, Martinato M, Lakatos PL, ECCO -EpiCom. The burden of inflammatory bowel disease in Europe. J Crohns Colitis. 2013;7(4):322–37. doi: 10.1016/j.crohns.2013.01.010.
4. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7. doi: 10.1038/nature01322.
5. Lin JY, Tang CY. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem. 2008;107(4):1587–96. doi: 10.1016/j.foodchem.2007.10.025.
6. Feldmann M, Brennan FM, Foxwell BM, Maini RN. The role of TNF alpha and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:188–99. doi: 10.1159/000060522.
7. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol Ther. 2008;117(2):244–79. doi: 10.1016/j.pharmthera.2007.10.001.
8. Kayal G, Jain K, Malviya S, Kharia A. Comparative SAR of synthetic coumarin derivatives for their anti-inflammatory activity. Int J Pharm Sci Res. 2014;5(9):3577–83.
9. Gancarcikova S, Lauko S, Hrckova G, Andrejcakova Z, Hajduckova V, Madar M et al. Innovative animal model of DSS-induced ulcerative colitis in pseudo-Germ-free mice. Cells. 2020 Dec 1;9(12):2571. doi: 10.3390/cells9122571.
10. Li H, Chen X, Liu J, Chen M, Huang M, Huang G et al. Ethanol extract of Centella asiatica alleviated dextran sulfate sodium-induced colitis: restoration on mucosa barrier and gut microbiota homeostasis. J Ethnopharmacol. 2021 Mar 1; 267:113445. doi: 10.1016/j.jep.2020.113445.
11. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1–2):15– 30. doi: 10.1016/j.mrrev.2008.03.002.
12. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem. 2005;12(8):887–916. doi: 10.2174/0929867053507315.”

n[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

n


n[if 1114 equals=”Yes”]n

n[/if 1114]”},{“box”:2,”content”:”

Regular Issue Open Access Article

n

n

n

n

n

Journal of Modern Chemistry & Chemical Technology

n

[if 344 not_equal=””]ISSN: 2229-6999[/if 344]

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Volume 13
Issue 1
Received April 5, 2022
Accepted April 26, 2022
Published April 29, 2022

n

n

n

n

Editor

n

n


n

Reviewer

n

n


n n

n”},{“box”:6,”content”:”“}]

Read More