Nanomedicine in the Tumor Microenvironment: Physiological Modulation Through Tissue Engineering Approaches

Year : 2026 | Volume : 13 | 01 | Page :
    By

    Parmar Harshul,

  • Varma Vishnu,

  • Shubham Singh,

  1. B.Pharm Student, Department of Pharmacy, School of Pharmacy, Rai University, Ahmedabad, Gujarat, India
  2. B.Pharm Student, Department of Pharmacy, School of Pharmacy, Rai University, Ahmedabad, Gujarat, India
  3. Assistant Professor, Department of Pharmaceutics, School of Pharmacy, Rai University, Ahmedabad, Gujarat, India

Abstract

The integration of nanomedicine and tissue engineering offers transformative strategies for cancer therapy by directly modulating the physiological processes within the tumor microenvironment (TME). This review emphasizes recent advances in nanomedicine that enable precise drug delivery, controlled release, and real-time monitoring of key physiological parameters influencing tumor progression, angiogenesis, and immune evasion. Tissue-engineered 3D tumor models provide physiologically relevant platforms that better mimic in vivo conditions than traditional 2D cultures, facilitating enhanced understanding of tumor biology and therapy resistance. Advances in stimuli-responsive nanoparticles, organ-on-chip platforms, and biomaterials allow researchers to study and manipulate the TME in ways that have direct translational potential for personalized medicine. By focusing on the physiological mechanisms and applied approaches, this review underscores the synergistic role of nanomedicine and tissue engineering in advancing therapeutic strategies and improving cancer treatment outcomes.

Keywords: Nanomedicine, Tumor Microenvironment, Tissue Engineering, 3D Tumor Models, Targeted Drug Delivery, Applied Physiology, Personalized Therapy.

How to cite this article:
Parmar Harshul, Varma Vishnu, Shubham Singh. Nanomedicine in the Tumor Microenvironment: Physiological Modulation Through Tissue Engineering Approaches. Research & Reviews: A Journal of Drug Design & Discovery. 2025; 13(01):-.
How to cite this URL:
Parmar Harshul, Varma Vishnu, Shubham Singh. Nanomedicine in the Tumor Microenvironment: Physiological Modulation Through Tissue Engineering Approaches. Research & Reviews: A Journal of Drug Design & Discovery. 2025; 13(01):-. Available from: https://journals.stmjournals.com/rrjoddd/article=2025/view=232843


References

  1. Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer. 2024;23(1). doi:10.1186/s12943-024-01941-z.
  2. Ungefroren H, Seidl D, Sebens S, Hass R, Lehnert H. Interaction of tumor cells with the microenvironment. Cell Commun Signal. 2011;9(1):18. doi:10.1186/1478-811X-9-18.
  3. Ma H, Qin J, Xu H. Biomimetic tumor microenvironment on a microfluidic platform. Biomicrofluidics. 2013;7(1):011501. doi:10.1063/1.4774070.
  4. Dzobo K. Taking a full snapshot of cancer biology: deciphering the tumor microenvironment for effective cancer therapy in the oncology clinic. OMICS. 2020;24(4):175–9. doi:10.1089/omi.2020.0019.
  5. Guller AE, Zvyagin AV, Grebenyuk PN, Deyev SM, Shekhter AB. Bioreactor-based tumor tissue engineering. Acta Naturae. 2016;8(3):44–58. doi:10.32607/20758251-2016-8-3-44-58.
  6. Son B, Lee S, Youn H, Kim E, Kim W, Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2016;8(3):3933–45. doi:10.18632/oncotarget.13907.
  7. Zhang Q, Sun S, Lou Y, Ji Y, Jin R, Chen Z, et al. Cancer associated fibroblasts under therapy induced senescence in the tumor microenvironment (Review). Exp Ther Med. 2024;27(4). doi:10.3892/etm.2024.12438.
  8. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8. doi:10.1016/j.canlet.2016.01.043.
  9. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20. doi:10.1186/s12929-018-0426-4.
  10. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72. doi:10.1038/cr.2009.5.
  11. Dai X, Guo X, Liu J, Cheng A, Peng X, Jia R, et al. Circular RNA circGRAMD1B inhibits gastric cancer progression by sponging miR-130a-3p and regulating PTEN and p21 expression. Aging. 2019;11(23):9689–708. doi:10.18632/aging.102415.
  12. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. doi:10.1038/s41573-018-0004-1.
  13. Ramamonjisoa N, Ackerstaff E. Characterization of the tumor microenvironment and tumor–stromal interactions by non-invasive preclinical imaging. Front Oncol. 2017;7:3. doi:10.3389/fonc.2017.00003.
  14. Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 2017;108(10):1921–6. doi:10.1111/cas.13336.
  15. Watanabe K, Panchy N, Noguchi S, Suzuki H, Hong T. Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition. NPJ Syst Biol Appl. 2019;5(1). doi:10.1038/s41540-019-0091-9.
  16. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49(5):708–18. doi:10.1038/ng.3818.
  17. Lee SY, Jeong EK, Jeon HM, Kim CH. Implications of epithelial-mesenchymal transition in cancer stem cells: therapeutic targets and clinical relevance. Expert Rev Mol Sci. 2014;16(3):289–300. doi:10.1586/14737175.2014.884927.
  18. Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: an enigma for cancer therapeutic targeting. Adv Cancer Res. 2019;141:43–84. doi:10.1016/bs.acr.2018.11.002.
  19. Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol. 2019;107:38–52. doi:10.1016/j.biocel.2018.12.001.
  20. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. doi:10.1038/nm.4409.
  21. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. doi:10.1016/j.stem.2014.02.006.
  22. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi:10.1016/j.lfs.2019.116781.
  23. Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular vesicles: emerging modulators of cancer drug resistance. Cancers. 2021;13(4):749. doi:10.3390/cancers13040749.
  24. Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 2019;47:100647. doi:10.1016/j.drup.2019.100647.
  25. Camorani S, Hill BS, Fontanella R, Greco A, Gramanzini M, Auletta L, et al. Inhibition of bone marrow-derived mesenchymal stem cells homing towards triple-negative breast cancer microenvironment using an anti-PDGFRβ aptamer. Theranostics. 2017;7(15):3595–607. doi:10.7150/thno.20481.
  26. Nandy SB, Arumugam A, Subramani R, Pedroza D, Hernandez K, Saltzstein E, et al. MicroRNA-125a influences breast cancer stem cells by targeting leukemia inhibitory factor receptor which regulates the Hippo signaling pathway. Oncotarget. 2015;6(19):17366–78. doi:10.18632/oncotarget.4020.
  27. O’Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomark Med. 2018;12(7):813–20. doi:10.2217/bmm-2017-0398.
  28. McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol Oncol. 2010;4(5):404–19. doi:10.1016/j.molonc.2010.06.005.
  29. Azzam DJ, Zhao D, Sun J, Minn AJ, Ranganathan P, Drews-Elger K, et al. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses. EMBO Mol Med. 2013;5(10):1502–22. doi:10.1002/emmm.201302558.
  30. Lindner U, Kramer J, Behrends J, Driller B, Wendler NO, Boehrnsen F, et al. Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy. 2010;12(8):992–1005. doi:10.3109/14653249.2010.501791.
  31. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A. 2012;109(8):2772–7. doi:10.1073/pnas.1017626108.
  32. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35(5):3945–51. doi:10.1007/s13277-013-1561-x.
  33. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84. doi:10.1186/s13058-016-0740-2.
  34. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841–56.e16. doi:10.1016/j.cell.2018.01.009.
  35. Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in colon cancer. Gastroenterology. 2017;152(5):964–79. doi:10.1053/j.gastro.2016.11.049.
  36. Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol Lett. 2017;14(3):2611–20. doi:10.3892/ol.2017.6497.
  37. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19. doi:10.1101/gad.279737.116.
  38. Wang X, Sun W, Shen W, Xia M, Chen C, Xiang D, et al. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J Hepatol. 2016;64(6):1283–94. doi:10.1016/j.jhep.2016.01.019.
  39. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72. doi:10.1016/j.ccr.2011.01.020.
  40. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. doi:10.1038/nrc.2016.73.
  41. Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 2022;82(6):1630–44. doi:10.1158/0008-5472.CAN-21-1305.
  42. Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-associated macrophage status in cancer treatment. Cancers. 2020;12(7):1987. doi:10.3390/cancers12071987.
  43. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. doi:10.3389/fimmu.2020.583084.
  44. Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt B):180–5. doi:10.1016/j.addr.2015.11.009.
  45. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. doi:10.1016/j.immuni.2014.06.010.
  46. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75. doi:10.3389/fphys.2014.00075.
  47. Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 2015;212(4):435–45. doi:10.1084/jem.20150295.
  48. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577. doi:10.1186/s12885-015-1546-9.
  49. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019;40(4):310–27. doi:10.1016/j.it.2019.02.003.
  50. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6(3):1670–90. doi:10.3390/cancers6031670.
  51. He Z, Ding J, Huie M, Yang Y, Zhang Y. Role of tumor-associated macrophages in the development of gastrointestinal tumors. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188616. doi:10.1016/j.bbcan.2021.188616.
  52. Jang J, Kim J, Lee K, Kim C. Tumor-associated macrophage as a prognostic biomarker of non-small cell lung cancer: a meta-analysis. Sci Rep. 2020;10(1):15203. doi:10.1038/s41598-020-72181-w.
  53. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31. doi:10.1038/nrc2444.
  54. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67(11):5064–6. doi:10.1158/0008-5472.CAN-07-0912.
  55. Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci. 2019;227:175–86. doi:10.1016/j.lfs.2019.04.053.
  56. Wang L, Zhu B, Zhang M, Wang X. Roles of CCL3 in tumor microenvironment. Cancer Manag Res. 2020;12:6163–72. doi:10.2147/CMAR.S258237.
  57. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011;25(23):2465–79. doi:10.1101/gad.180331.111.
  58. Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3. doi:10.1038/nature13862.
  59. Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: innocent bystander or important player? Cancer Treat Rev. 2018;70:178–89. doi:10.1016/j.ctrv.2018.08.010.
  60. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27(4):462–72. doi:10.1016/j.ccell.2015.02.015.
  61. Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol. 2017; 316:1–10. doi:10.1016/j.cellimm.2017.04.005.
  62. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904. doi:10.1038/nrd.2018.169.
  63. Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-associated macrophages: recent insights and therapies. Front Oncol. 2020;10:188. doi:10.3389/fonc.2020.00188.
  64. Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31(19):1808303. doi:10.1002/adma.201808303.
  65. Ramesh A, Brouillard A, Kumar S, Nandi D, Kulkarni A. Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials. 2020;227:119559. doi:10.1016/j.biomaterials.2019.119559.
  66. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–59. doi:10.1016/j.ccr.2014.05.016.
  67. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell. 2017;32(5):654–68.e5. doi:10.1016/j.ccell.2017.10.005.
  68. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020;38(5):685–700.e8. doi:10.1016/j.ccell.2020.09.001.
  69. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci U S A. 2018;115(17):E4041–50. doi:10.1073/pnas.1720948115.
  70. Kumar, S., Saha, S., Singh, K., Singh, T., Mishra, A. K., Dubey, B. N., & Singh, S. (2024). Beneficial effects of spirulina on brain health: A systematic review. Current Functional Foods, 3(1), Article e120124225622. https://doi.org/10.2174/0126668629269256231222092721
  71. RaviKKumar VR, Rathi S, Singh S, Patel B, Singh S, Chaturvedi K, Sharma B. A Comprehensive Review on Ulcer and Their Treatment. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 21;39:e20230006. doi: 10.62958/j.cjap.2023.006. PMID: 38755116.
  72. Singh, V., Arora, S., Akram, W., Alam, S., Kumari, L., Kumar, N., Kumar, B., Kumar, S., Agrawal, M., Singhal, M., Kumar, S., Singh, S., Singh, K., Saha, S., & Dwivedi, V. (2024). Involvement of molecular mechanism and biological activities of Pemirolast: A therapeutic review. New Emirates Medical Journal, 5, Article e02506882308410. https://doi.org/10.2174/0102506882308410240607053814
  73. Rajput DS, Gupta N, Singh S, Sharma B. A Comprehensive Review: Personalized Medicine for Rare Disease Cancer Treatment. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 23;39:e20230008. doi: 10.62958/j.cjap.2023.008. PMID: 38830754.
  74. Singh S, Chaurasia A, Rajput DS, Gupta N. Mucoadhesive Drug Delivery System and There Future Prospective: Are a Promising Approach for Effective Treatment? Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 20;39:e20230005. doi: 10.62958/j.cjap.2023.005. PMID: 38751344.
  75. Kumar, S., Saha, S., Sharma, B., Singh, S., Shukla, P., Mukherjee, S., Agrawal, M., Singh, K., & Singh, T. (2023). The role of resveratrol in Alzheimer’s disease: A comprehensive review of current research. Current Functional Foods, 2(2), Article e121223224364, 13 pages. https://doi.org/10.2174/0126668629269244231127071411
  76. Patel S, Ismail Y, Singh S, Rathi S, Shakya S, Patil SS, Bumrela S, Jain PC, Goswami P, Singh S. Recent Innovations and Future Perspectives in Transferosomes for Transdermal Drug Delivery in Therapeutic and Pharmacological Applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Oct 24;40:e20240031. doi: 10.62958/j.cjap.2024.031. PMID: 39442957.
  77. Vaghela MC, Rathi S, Shirole RL, Verma J, Shaheen, Panigrahi S, Singh S. Leveraging AI and Machine Learning in Six-Sigma Documentation for Pharmaceutical Quality Assurance. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jul 18;40:e20240005. doi: 10.62958/j.cjap.2024.005. PMID: 39019923.
  78. Patel S, Ismail Y, Singh S, Rathi S, Shakya S, Patil SS, Bumrela S, Jain PC, Goswami P, Singh S. Recent Innovations and Future Perspectives in Transferosomes for Transdermal Drug Delivery in Therapeutic and Pharmacological Applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Oct 24;40:e20240031. doi: 10.62958/j.cjap.2024.031. PMID: 39442957.
  79. Kumar, S., Saha, S., Pathak, D., Singh, T., Kumar, A., Singh, K., Mishra, A. K., Singh, S., & Singh, S. (2024). Cholesterol absorption inhibition by some nutraceuticals. Recent Advances in Food, Nutrition & Agriculture, 16(1), 2–11. https://doi.org/10.2174/012772574X285280240220065812
  80. Singh, S., Chaurasia, A., Rajput, D. S., & Gupta, N. (2024). An overview on mucoadhesive buccal drug delivery systems & approaches: A comprehensive review. African Journal of Biological Sciences (South Africa), 6(5), 522–541, DOI: 10.33472/AFJBS.6.5.2024.522-541
  81. Kumar, S., Singh, S., Rajput, D., Sharma, B., Chaturvedi, K., Singh, N., Saha, S., Singh, K., & Mukherjee, S. (2024). Pharmacological approaches and herbal interventions for Alzheimer’s disease. The Natural Products Journal, 14(8), Article e220124225945. https://doi.org/10.2174/0122103155275266231123090138 
  82. Ravikkumar VR, Patel BD, Rathi S, Parthiban S, Upadhye MC, Shah AM, Rehan SSA, Samanta S, Singh S. Formulation and Evaluation of Drumstick Leaves Tablet as An Immunomodulator. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jun 21;40:e20240004. doi: 10.62958/j.cjap.2024.004. PMID: 38902996.
  83. Sharma, A., Bara, G., Keshamma, E., Sharma, B., Singh, S., Singh, S. P., Parashar, T., Rathore, H. S., Sarma, S. K., & Rawat, S. (2023). Cancer biology and therapeutics: A contemporary review. Journal of Cardiovascular Disease Research, 14(10), 1229-1247.
  84. Dewangan, H. K., Singh, S., Mishra, R., & Dubey, R. K. (2020). A review on application of nanoadjuvant as delivery system. International Journal of Applied Pharmaceutics, 12(4), 24–33. https://doi.org/10.22159/ijap.2020v12i4.36856 
  85. Singh S, Chaurasia A, Gupta N, Rajput DS. Effect of Formulation Parameters on Enalapril Maleate Mucoadhesive Buccal Tablet Using Quality by Design (QbD) Approach. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jun 27;40:e20240003. doi: 10.62958/j.cjap.2024.003. PMID: 38925868.
  86. Patel S, Alam MI, Shirole RL, Kulkarni PA, Nath J, Prasad M, Singh S, Rathi S. Formulation and optimization of piroxicam loaded nanoparticles for topical application using design of experiments (DoE). Cuest Fisioter. 2025;54(4):109-119. DOI: https://doi.org/10.48047/bsa4k692  
  87. Patel SK, Prathyusha S, Kasturi M, Godse KC, Singh R, Rathi S, Bumrela S, Singh S, Goswami P. Optimizing Irbesartan Fast Dissolving Tablets Using Natural Polysaccharides for Enhanced Drug Delivery and Patient Compliance. Int Res J Multidiscip Scope (IRJMS). 2025;6(1):1181-1190. https://doi.org/10.47857/irjms.2025.v06i01.02542  
  88. Prince Patel, Piyush Jain, Hetvarth Patel, Aman Tiwari, Sanjesh Rathi and Shubham Singh (2025) Formulation, optimization and evaluation of mucoadhesive buccal tablets of ondansetron for enhanced bioavailability and sustained drug release. Biochem. Cell. Arch. 25, 1063-1069. DOI: https://doi.org/10.51470/bca.2025.25.1.1063 
  89. Singh S, Rathi S, Singh S, Sharma B, Dwivedi V. CD3-Bispecific Monoclonal Antibodies: A Novel Therapeutic Approach for Complex and Multifactorial Diseases. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2025 Aug 4;41:e20250019. doi: 10.62958/j.cjap.2025.019. PMID: 40754469.
  90. Singh S, Rajput DS, Gupta N, Sharma B, Rathi S, Singh A. A Brief Review on Transdermal Patches. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2025 Jun 23;41:e20250013. doi: 10.62958/j.cjap.2025.013. PMID: 40545439.
  91. Sanjesh G. Rathi, Kaushik Kamani, Bhoomi Patel, Shubham Singh, Yash Patel. Formulation and Evaluation of Voriconazole Emulgel. Research Journal Pharmacy and Technology. 2025;18(8):3917-2. doi: 10.52711/0974-360X.2025.00563
  92. Vagela K, Patel A, Bhagwan DP, Shah A, Shirole RL, Rathi S, Singh S. Formulation and evaluation of anti-protozoal drug for emulgel using new polymer. Research J Pharm Technol. 2025 Oct;18(10):4833-4838. doi:10.52711/0974-360X.2025.00697.

Ahead of Print Subscription Review Article
Volume 13
01
Received 10/11/2025
Accepted 20/11/2025
Published 23/11/2025
Publication Time 13 Days


Login


My IP

PlumX Metrics