This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
T Premkumar,
T Ch Anil Kumar,
Prajeesh Raj V,
P. Mohankumar,
Pravin P. Pawar,
P.Neopolean,
S Kalaiselvan,
Avinash Kumar,
- Assistant professor, Dept of Mechanical engineering SRM Madurai College for Engineering and Technology, Tamil Nadu, India
- Assistant Professor, Department of Mechanical Engineering, Vignan’s Foundation for Science Technology and Research, Vadlamudi, Guntur Dt., Andhra Pradesh, India
- Assistant Professor, Aeronautical Engineering ,Jawaharlal College of Engineering and Technology, Kerela, India
- , Department of Mechatronics Engineering,Sona College of Technology, Salem., Tamil Nadu, India
- Assistant Professor, Dept of Physics , Thakur College of Science and Commerce, Kandivali, Mumbai 400101, Maharashtra, India
- Associate Professor, Department of Mechanical Engineering,SCAD College of Engineering and Technology,Cheranmahadevi, Tamil Nadu, India
- Associate Professor, Department of Chemistry Rathinam Technical Campus, Coimbatore, Tamil Nadu, India
- Assistant Professor, Department of Mechanical Engineering Cambridge Institute of Technology, Ranchi, Jharkhand, India
Abstract
Flexible OLED displays need advanced material systems to integrate capabilities for mechanical flexibility as well as thermal stability and environmental durability at low costs. Semi-interpenetrating polymer networks (SIPNs) combined with quantum dot (QD)-polymer nanocomposites serve to improve OLED performance capabilities. They combine a stable structural design along with a flexible matrix through the matrix capabilities of SIPNs which result in efficient luminescence and pure color output courtesy of CdSe/ZnS QDs with quantum confinement effects. Laboratory technicians used thin-film deposition methods to make OLED devices while developing optimized charge injection layers for better exciton recombination. Electrical and optical property analysis by UV-Vis absorption and photoluminescence (PL) and electroluminescence (EL) spectra showed the material exhibited broad absorption and stable emission performance. OLEDs passed 1000 bending tests maintaining 90% of their initial luminance stability and showing negligible resistance fluctuations during the tests. The thermal stability of the composite material was established through TGA testing up to 300°C but performance reduction occurred after 60 days of exposure to high humidity conditions according to testing results. The combination of SIPN-QD nanocomposites acts to boost OLED durability and efficiency and stability under environmental conditions thereby making them suitable for future flexible display systems.
Keywords: SIPN-QD
T Premkumar, T Ch Anil Kumar, Prajeesh Raj V, P. Mohankumar, Pravin P. Pawar, P.Neopolean, S Kalaiselvan, Avinash Kumar. Integration of Semi-Interpenetrating Polymer Networks and Quantum Dot–Polymer Nanocomposites for Low-Cost, Flexible OLED Display. Journal of Polymer and Composites. 2025; 13(06):-.
T Premkumar, T Ch Anil Kumar, Prajeesh Raj V, P. Mohankumar, Pravin P. Pawar, P.Neopolean, S Kalaiselvan, Avinash Kumar. Integration of Semi-Interpenetrating Polymer Networks and Quantum Dot–Polymer Nanocomposites for Low-Cost, Flexible OLED Display. Journal of Polymer and Composites. 2025; 13(06):-. Available from: https://journals.stmjournals.com/jopc/article=2025/view=225300
References
- Zhang, H., & Rogers, J. A. (2019). Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms. Advanced Optical Materials, 7(2), 1800936.
- Pan, J., Zhu, L., Han, J., & Hickner, M. A. (2015). Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 27(19), 6689-6698.
- Shahi, F., Zarei, S., Salah Othman, R., Afshar, H., Kamran, F., Afshar Taromi, A., & Khonakdar, H. A. (2025). Interpenetrating Polymer Networks in Biomedical Fields: Recent Advanced and Applications. Polymers for Advanced Technologies, 36(2), e70099.
- Keum, K., Yang, S., Kim, K. S., Park, S. K., & Kim, Y. H. (2024). Recent progress of stretchable displays: a comprehensive review of materials, device architectures, and applications. Soft Science, 4(4).
- Ahadzadeh, S., Brebels, S., Maes, W., & Deferme, W. (2025). Strategies for Advancing Near‐Infrared Organic Light‐Emitting Diodes: Innovations in Luminescent Materials, Device Architectures, Fabrication Methods, and Applications. Advanced Functional Materials, 2419599.
- Liang, S., Zhang, M., Biesold, G. M., Choi, W., He, Y., Li, Z., … & Lin, Z. (2021). Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Advanced Materials, 33(50), 2005888.
- Li, Z., Chen, F., Wang, L., Shen, H., Guo, L., Kuang, Y., … & Li, L. S. (2018). Synthesis and evaluation of ideal core/shell quantum dots with precisely controlled shell growth: nonblinking, single photoluminescence decay channel, and suppressed FRET. Chemistry of Materials, 30(11), 3668-3676.
- Yang, H., Zhang, L., Tang, Y., Xiang, W., Wang, X., Xiao, M., … & Zhang, J. (2021). Enhanced multiexciton emission property in gradient alloy core/shell CdZnSeS/ZnS quantum dots: balance between surface passivation and strain-induced lattice defect. The Journal of Physical Chemistry C, 125(19), 10759-10767.
- Jang, E., & Jang, H. (2023). Quantum dot light-emitting diodes. Chemical Reviews, 123(8), 4663-4692.
- Chen, J., Zhao, Q., Yu, B., & Lemmer, U. (2024). A review on quantum dot‐based color conversion layers for mini/micro‐LED displays: packaging, light management, and pixelation. Advanced Optical Materials, 12(2), 2300873.
- Lu, S. Y., Mukhopadhyay, S., Froese, R., & Zimmerman, P. M. (2018). Virtual screening of hole transport, electron transport, and host layers for effective OLED design. Journal of Chemical Information and Modeling, 58(12), 2440-2449.
- Hains, A. W., Liu, J., Martinson, A. B., Irwin, M. D., & Marks, T. J. (2010). Anode interfacial tuning via electron‐blocking/hole‐transport layers and indium tin oxide surface treatment in bulk‐heterojunction organic photovoltaic cells. Advanced Functional Materials, 20(4), 595-606.
- Kadim, A. M. (2017). Electroluminescence Light Emitting Device Enhanced by TPD Polymer and Emissive Quantum Dots.
- Kim, J. (2024). Recent progresses and challenges in colloidal quantum dot light-emitting diodes: a focus on electron transport layers with metal oxide nanoparticles and organic semiconductors. Nanoscale Horizons.
- An, K., Kim, C., Kim, S., Lee, T., Shin, D., Lim, J., … & Kang, K. T. (2023). Randomly Disassembled Nanostructure for Wide Angle Light Extraction of Top‐Emitting Quantum Dot Light‐Emitting Diodes. Small, 19(20), 2206133.
- Sarma, M., Chen, L. M., Chen, Y. S., & Wong, K. T. (2022). Exciplexes in OLEDs: Principles and promises. Materials Science and Engineering: R: Reports, 150, 100689.
- Ding, K., Chen, H., Fan, L., Wang, B., Huang, Z., Zhuang, S., … & Wang, L. (2017). Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes. ACS applied materials & interfaces, 9(23), 20231-20238.
- Sun, N., Han, Y., Huang, W., Xu, M., Wang, J., An, X., … & Huang, W. (2024). A Holistic Review of C= C Crosslinkable Conjugated Molecules in Solution‐Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. Advanced Materials, 36(18), 2309779.
- Xie, M., Pang, H., Wang, J., Cui, Z., Ding, H., Zheng, R., … & Xia, S. (2024). Charge balance in OLEDs: Optimization of hole injection layer using novel p‐dopants. Journal of the Society for Information Display, 32(2), 59-69.
- Naqvi, S. M. K. A., Baig, M. F., Farid, T., Nazir, Z., Mohsan, S. A. H., Liu, Z., … & Chang, S. (2023). Unraveling degradation processes and strategies for enhancing reliability in organic light-emitting diodes. Nanomaterials, 13(23), 3020.
- Chen, J., Zhao, X., Wang, B., Liu, J., Tang, X., Peng, T., & Xiong, Z. (2023). Effects of host-molecule transport polarities on the transient electroluminescence decay and efficiency roll-off of doped organic light-emitting diodes. Physical Review Applied, 20(5), 054034.
- Walzer, K., Maennig, B., Pfeiffer, M., & Leo, K. (2007). Highly efficient organic devices based on electrically doped transport layers. Chemical reviews, 107(4), 1233-1271.
- De Blasio, C., & De Blasio, C. (2019). Thermogravimetric analysis (TGA). Fundamentals of Biofuels Engineering and Technology, 91-102.
- Wang, G., & Duan, Y. (2024). Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology. SmartMat, 5(6), e1286.
- Zvaigzne, M. A., Martynov, I. L., Samokhvalov, P. S., & Nabiev, I. R. (2016). Fabrication of composite materials from semiconductor quantum dots and organic polymers for optoelectronics and biomedicine: Role of surface ligands. Russian Chemical Bulletin, 65, 2568-2577.
- Li, H., Jiao, J., Ye, Q., Wu, Z., Luo, D., & Xiong, D. (2021). Controllable synthesis of CdSe/ZnS core–shell quantum dots by one-step thermal injection and application in light-emitting diodes. Journal of Materials Science: Materials in Electronics, 32(17), 22024-22034.
- Harun, N. A., Horrocks, B. R., & Fulton, D. A. (2011). A miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles. Nanoscale, 3(11), 4733-4741.
- Yao, J., Li, Y., Li, Y., Sui, Q., Wen, H., Cao, L., … & Li, Q. (2021). Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon, 184, 764-771.
- Wei, M. K., Lin, C. W., Yang, C. C., Kiang, Y. W., Lee, J. H., & Lin, H. Y. (2010). Emission characteristics of organic light-emitting diodes and organic thin-films with planar and corrugated structures. International journal of molecular sciences, 11(4), 1527-1545.
- Rohr, J. (2018). Measurements and Modelling of Space-Charge-Limited Current Transport in Organic Single-Carrier Devices (Doctoral dissertation, Imperial College London).
- Lupan, O., Pauporté, T., & Viana, B. (2010). Low‐voltage UV‐electroluminescence from ZnO‐Nanowire array/p‐GaN light‐emitting diodes. Advanced Materials, 22(30), 3298-3302.
- Das, T. K., & Ganguly, S. (2023). Revolutionizing food safety with quantum dot–polymer nanocomposites: from monitoring to sensing applications. Foods, 12(11), 2195.
- Han, J., Ding, Q., Mei, C., Wu, Q., Yue, Y., & Xu, X. (2019). An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes. Electrochimica Acta, 318, 660-672.
- Sethi, S., & Ray, B. C. (2015). Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability. Advances in colloid and interface science, 217, 43-67.
- Viard, A., Fonblanc, D., Lopez‐Ferber, D., Schmidt, M., Lale, A., Durif, C., … & Bernard, S. (2018). Polymer derived Si–B–C–N ceramics: 30 years of research. Advanced Engineering Materials, 20(10), 1800360.
- Liao, D., Gu, T., Liu, J., Chen, S., Zhao, F., Len, S., … & Wang, J. (2024). Degradation behavior and ageing mechanism of E-glass fiber reinforced epoxy resin composite pipes under accelerated thermal ageing conditions. Composites Part B: Engineering, 270, 111131.
- Kwon, S. K., Baek, J. H., Choi, H. C., Kim, S. K., Lampande, R., Pode, R., & Kwon, J. H. (2019). Degradation of OLED performance by exposure to UV irradiation. RSC advances, 9(72), 42561-42568.
- Abd Nasir, F. H., & Woon, K. L. (2024). Charge carrier trapping in organic semiconductors: Origins, impact and strategies for mitigation. Synthetic Metals, 307, 117661.
- Naqvi, S. M. K. A., Baig, M. F., Farid, T., Nazir, Z., Mohsan, S. A. H., Liu, Z., … & Chang, S. (2023). Unraveling degradation processes and strategies for enhancing reliability in organic light-emitting diodes. Nanomaterials, 13(23), 3020.
- Scholz, S., Kondakov, D., Lussem, B., & Leo, K. (2015). Degradation mechanisms and reactions in organic light-emitting devices. Chemical reviews, 115(16), 8449-8503.

Journal of Polymer and Composites
| Volume | 13 |
| 06 | |
| Received | 22/07/2025 |
| Accepted | 13/08/2025 |
| Published | 02/09/2025 |
| Publication Time | 42 Days |
PlumX Metrics
