Thermo-Mechanical and Electrical Properties of Multi-Walled Carbon Nanotube-Enhanced Polyimide Composites for Aerospace Thermal Protection Systems

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 13 | 05 | Page :
    By

    R Meenakshi Reddy,

  • P. Piramanayagam,

  • M.Sridharan,

  • Padhyala Priyadarsan,

  • Jnanaranjan Acharya,

  • Surrya Prakash Dillibabu,

  • Beporam Iftekhar Hussain,

  • Dinesh Babu,

  1. Associate Professor, Department of Mechanical Engineering, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, India
  2. Assistant Professor, Department of Chemistry, KLN College of Engineering, Sivagangai, Tamil Nadu, India
  3. Professor, Department of Mathematics, NPR College of Engineering and Technology (Autonomous), Natham, Dindigul, Tamil Nadu, India
  4. Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
  5. Assistant Professor, Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, Andhra Pradesh, India
  6. Professor, Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
  7. Associate Professor, Department of Mechanical Engineering, Bapatla Engineering College, Andhra Pradesh, India
  8. Assistant Professor, Department of Mechanical Engineering, Achariya College of Engineering Technology, Puducherry,

Abstract

Advanced aerospace thermal protection systems (TPS) need materials to fulfill a specific combination of high thermal resistance and mechanical strength as well as electrical reliability. SI serves aerospace engineering applications because of its superior thermal stability as well as its excellent mechanical properties and lightweight structure. The thermal conductivity limitation and electrical insulation properties of this material prevent its suitability for heat-dissipative and EMI-shielding applications. The research examines these limitations by creating MWCNT polyimide composites through solution mixing combined with thermal curing processes. Various MWCNT concentrations from 0.5% to 1% to 3% to 5% by weight improved thermal properties, mechanical strength and electrical value in the composites. Thermal testing through TGA and DSC showed that MWCNT-polyimide interfaces formed productively which resulted in superior thermal resistance as well as higher glass transition points, coefficient of thermal expansion (CTE). The tensile strength of the composites elevated by 50% when MWCNT concentration reached 3 wt% according to mechanical testing. The four-point probe method detected a seven-order improvement of electrical conductivity which reached percolation thresholds at 1 wt% MWCNT. Laboratory tests established EMI shielding effectiveness (SE) performance from 8 to 12 GHz X-band frequencies and from 12 to 18 GHz Ku-band frequencies through 5 wt% MWCNT incorporation which yielded 40 dB SE while making these materials applicable for EMI shielding purposes. The Kruskal-Wallis test revealed statistically important improvements in tested properties. Research proves that MWCNT-reinforced polyimide composites possess potential applications as next-generation aerospace thermal protection systems which advance the development of polymer composites that combine tailored thermal, mechanical and electromagnetic properties.

Keywords: thermal expansion , thermal protection systems

How to cite this article:
R Meenakshi Reddy, P. Piramanayagam, M.Sridharan, Padhyala Priyadarsan, Jnanaranjan Acharya, Surrya Prakash Dillibabu, Beporam Iftekhar Hussain, Dinesh Babu. Thermo-Mechanical and Electrical Properties of Multi-Walled Carbon Nanotube-Enhanced Polyimide Composites for Aerospace Thermal Protection Systems. Journal of Polymer and Composites. 2025; 13(05):-.
How to cite this URL:
R Meenakshi Reddy, P. Piramanayagam, M.Sridharan, Padhyala Priyadarsan, Jnanaranjan Acharya, Surrya Prakash Dillibabu, Beporam Iftekhar Hussain, Dinesh Babu. Thermo-Mechanical and Electrical Properties of Multi-Walled Carbon Nanotube-Enhanced Polyimide Composites for Aerospace Thermal Protection Systems. Journal of Polymer and Composites. 2025; 13(05):-. Available from: https://journals.stmjournals.com/jopc/article=2025/view=216665


References

  1. Ni, L., Luo, Y., Lu, J., Ye, H., Yan, L., Liang, M., … & Zou, H. (2024). Lightweight polyimide composite foams with anisotropic hierarchical pore structure for enhanced mechanical, flame retardancy and thermal insulation purposes. Composites Part A: Applied Science and Manufacturing, 185, 108325.
  2. Wu, Z., He, J., Yang, H., & Yang, S. (2022). Progress in aromatic polyimide films for electronic applications: Preparation, structure and properties. Polymers, 14(6), 1269.
  3. Lv, Y. G., Wang, Y. T., Meng, T., Wang, Q. W., & Chu, W. X. (2024). Review on thermal management technologies for electronics in spacecraft environment. Energy Storage and Saving, 3(3), 153-189.
  4. Hu, B., Guo, H., Cui, Y., Li, J., Cao, M., Qi, W., … & Li, B. (2024). Engineering multifunctional phase change composites enabled by dual-interpenetrating hybrid scaffold for excellent thermal conductivity and electromagnetic absorption. Chemical Engineering Journal, 492, 152259.
  5. Li, X., Sheng, M., Gong, S., Wu, H., Chen, X., Lu, X., & Qu, J. (2022). Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chemical Engineering Journal, 430, 132928.
  6. Alfei, S., & Schito, G. C. (2022). Nanotubes: Carbon-based fibers and bacterial Nano-conduits both arousing a Global Interest and conflicting opinions. Fibers, 10(9), 75.
  7. Rahimi-Ahar, Z., & Ahar, L. R. (2024). Thermal, optical, mechanical, dielectric, and electrical properties of nanocomposites. European Polymer Journal, 113337.
  8. Lee, D. K., Yoo, J., Kim, H., Kang, B. H., & Park, S. H. (2022). Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios. Materials, 15(4), 1356.
  9. Khanna, V., Kumar, V., & Bansal, S. A. (2021). Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective. Materials Research Bulletin, 138, 111224.
  10. Cambré, S., Liu, M., Levshov, D., Otsuka, K., Maruyama, S., & Xiang, R. (2021). Nanotube‐based 1D heterostructures coupled by van der Waals forces. Small, 17(38), 2102585.
  11. Mohammed, H. M., Nurazzi, N. M., Rawi, N. F. M., Kassim, M. H. M., Salleh, K. M., Abdullah, N., & Norrrahim, M. N. F. Effect of Dispersion and Interfacial Functionalization of Multiwalled Carbon Nanotubes in Epoxy Composites: Structural and Thermogravimetric Analysis Characteristics. In Nanofillers for Sustainable Applications(pp. 273-289). CRC Press.
  12. Ali, A., Koloor, S. S. R., Alshehri, A. H., & Arockiarajan, A. (2023). Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures–A review. Journal of Materials Research and Technology, 24, 6495-6521.
  13. Xiong, K., Sun, Z. P., Hu, J. C., Ma, C., Wang, J. T., Ge, X., … & Ling, L. C. (2024). Polyimide-assisted fabrication of highly oriented graphene-based all-carbon foams for increasing the thermal conductivity of polymer composites. New Carbon Materials, 39(2), 271-282.
  14. Mallakpour, S., & Zadehnazari, A. (2014). Thermal and mechanical stabilities of composite films from thiadiazol bearing poly (amide-thioester-imide) and multiwall carbon nanotubes by solution compounding. Polymer bulletin, 71(1), 207-225.
  15. Sezer Hicyilmaz, A., & Celik Bedeloglu, A. (2022). Electromagnetic interference shielding thermoplastic composites reinforced with carbon based hybrid materials: a review. Composite Interfaces, 29(13), 1413-1470.
  16. Wu, H., Guo, A., Kong, D., Li, X., Wu, J., Wang, H., … & Hu, Y. (2024). Nacre-like carbon fiber-reinforced biomimetic ceramic composites: fabrication, microstructure, and mechanical performance. Ceramics International, 50(14), 25388-25399.
  17. Shao, Y., Liu, J., Wang, H., Peng, Q., Tian, Y., Zhu, X., … & Liao, Q. (2025). Characterization of flow and heat transfer in flexible electroconductive pumps at various bending modes. International Journal of Thermal Sciences, 212, 109794.
  18. Cui, Z., Yang, M., Han, G., Zhang, H., Wang, Y., Zhang, Y., … & Liu, X. (2024). Recent advances in carbon composite films for high-performance, multifunctional and intelligent electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 119627.
  19. Devi, N., & Ray, S. S. (2022). Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. Polymer Engineering & Science, 62(3), 591-621.
  20. Sharma, A., Mukhopadhyay, T., Rangappa, S. M., Siengchin, S., & Kushvaha, V. (2022). Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Archives of Computational Methods in Engineering, 29(5), 3341-3385.
  21. Wieczorska, A., & Drewing, S. (2024). Statistical Methods in the Analysis of the Effect of Carbonisate on the Hardness of Epoxy-Resin-Based Composites. Materials, 17(23), 5916.
  22. Sorayani Bafqi, M. S., Birgun, N., & Saner Okan, B. (2024). Design and Manufacturing of High-Performance and High-Temperature Thermoplastic Composite for Aerospace Applications. In Handbook of Nanofillers(pp. 1-48). Singapore: Springer Nature Singapore.
  23. Albert, A. A., Parthasarathy, V., & Kumar, P. S. (2024). Review on recent progress in epoxy‐based composite materials for Electromagnetic Interference (EMI) shielding applications. Polymer Composites, 45(3), 1956-1984.
  24. Tang, H., Chen, H., Sun, Q., Chen, Z., & Yan, W. (2021). Experimental and computational analysis of structure-property relationship in carbon fiber reinforced polymer composites fabricated by selective laser sintering. Composites Part B: Engineering, 204, 108499.
  25. Ramli, N., Norkhairunnisa, M., Ando, Y., Abdan, K., & Leman, Z. (2022). Advanced polymer composite for aerospace engineering applications. In Advanced Composites in Aerospace Engineering Applications(pp. 1-21). Cham: Springer International Publishing.
  26. Ogbonna, V. E., Popoola, P. I., Popoola, O. M., & Adeosun, S. O. (2023). A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement. Journal of Thermoplastic Composite Materials, 36(2), 836-865.
  27. Meng, Y., Yang, D., Jiang, X., Bando, Y., & Wang, X. (2024). Thermal conductivity enhancement of polymeric composites using hexagonal boron nitride: design strategies and challenges. Nanomaterials, 14(4), 331.
  28. Mead, J. L., Wang, S., Zimmermann, S., Fatikow, S., & Huang, H. (2023). Resolving the adhesive behavior of 1D materials: a review of experimental approaches. Engineering, 24, 39-72.
  29. Banerjee, A., Jha, K., Kumar, R., Sharma, S., Rangappa, S. M., Siengchin, S., … & Abbas, M. (2025). Unveiling of mechanical, morphological, and thermal characteristics of alkali-treated flax and pine cone fiber-reinforced polylactic acid (PLA) composites: fabrication and characterizations. Biomass Conversion and Biorefinery, 1-28.
  30. Umar, M., Ofem, M. I., Anwar, A. S., & Salisu, A. G. (2022). Thermo gravimetric analysis (TGA) of PA6/G and PA6/GNP composites using two processing streams. Journal of King Saud University-Engineering Sciences, 34(2), 77-87.
  31. Shnawa, H. A. (2022). Studies on thermal properties and curing kinetics of talc-filled epoxy resin composite using differential scanning calorimetry. Polymer Bulletin, 79(12), 11461-11478.
  32. Paul, G., Jha, P., Roy, A., & Manna, I. (2024). Laser flash technique as an efficacious assessment approach for thermal conductivity of tungsten disulphide nanofluids. Journal of Molecular Liquids, 404, 124996.
  33. Li, W., An, J., Lu, Y., & Li, S. (2024). Effects of PVA fibers and multi-walled carbon nanotubes reinforcement on uniaxial compression fatigue properties of Engineered geopolymer composites. Composite Structures, 337, 118028.
  34. Naji, H. F., Khalid, N. N., Alsaraj, W. K., Habouh, M. I., & Marchetty, S. (2021). Experimental investigation of flexural enhancement of RC beams with multi-walled carbon nanotubes. Case Studies in Construction Materials, 14, e00480.
  35. Jiang, Y., Song, S., Mi, M., Yu, L., Xu, L., Jiang, P., & Wang, Y. (2023). Improved electrical and thermal conductivities of graphene–carbon nanotube composite film as an advanced thermal interface material. Energies, 16(3), 1378.
  36. Safna, K., Peediyekkal, J., Sabna, M., Sreedevi, S., & Chennabasappa, M. (2024). Rietveld refinement, core level electron shell structure and frequency-dependent dielectric behavior of vanadium bismuth oxide microstructures. Physica B: Condensed Matter, 691, 416318.
  37. Zhang, S., Ye, J., & Liu, X. (2023). Constructing conductive network using 1D and 2D conductive fillers in porous poly (aryl ether nitrile) for EMI shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130414.
  38. Kasper, M., Leike, A., Thielmann, J., Winkler, C., R-Smith, N. A. Z., & Kienberger, F. (2022). Electrochemical impedance spectroscopy error analysis and round robin on dummy cells and lithium-ion-batteries. Journal of Power Sources, 536, 231407.
  39. AravindKumar, P., Sivaranjini, S., JyothirGanesh, P., & Garlapati, C. (2024). New solubility model to correlate solubility of anticancer drugs in supercritical carbon dioxide and evaluation with Kruskal–Wallis test. Fluid Phase Equilibria, 582, 114099.
  40. Dao, P. B., Barczewski, R., & Staszewski, W. J. Misalignment Fault Detection in Rotor-Shaft Systems Under Varying Load Conditions Based on Kruskal-Wallis Test and Tukey’s Honestly Significant Difference Test. Available at SSRN 4757996.
  41. Vermeulen, B., & Van Tooren, M. J. L. (2006). Design case study for a comparative performance analysis of aerospace materials. Materials & design, 27(1), 10-20.
  42. Sumesh, K. R., Palanisamy, S., Khan, T., Ajithram, A., & Ahmed, O. S. (2024). Mechanical, morphological and wear resistance of natural fiber/glass fiber-based polymer composites. BioResources, 19(2), 3271-3289.
  43. Palanisamy, S., Kalimuthu, M., & Palaniappan, M. (2022). Characterization of acacia caesia bark fibers (ACBFs). J Nat Fibers 19: 10241–10252.
  44. Almeshaal, M., Palanisamy, S., Murugesan, T. M., Palaniappan, M., & Santulli, C. (2022). Physico-chemical characterization of Grewia Monticola Sond (GMS) fibers for prospective application in biocomposites. Journal of Natural Fibers, 19(17), 15276-15290.
  45. Palaniappan, M., Palanisamy, S., Murugesan, T. M., Alrasheedi, N. H., Ataya, S., Tadepalli, S., & Elfar, A. A. (2025). Novel Ficus retusa L. aerial root fiber: a sustainable alternative for synthetic fibres in polymer composites reinforcement. Biomass Conversion and Biorefinery, 15(5), 7585-7601.
  46. Palanisamy, S., Kalimuthu, M., Santulli, C., Palaniappan, M., Nagarajan, R., & Fragassa, C. (2023). Tailoring epoxy composites with Acacia caesia bark fibers: Evaluating the effects of fiber amount and length on material characteristics. Fibers, 11(7), 63.
  47. Palanisamy, S., Keerthiveetil Ramakrishnan, S., Santulli, C., Khan, T., & Ahmed, O. S. (2024). Mechanical and wear performance evaluation of natural fiber/epoxy matrix composites. BioResources, 19(4), 845.
  48. Palanisamy, S., Kalimuthu, M., Azeez, A., Palaniappan, M., Dharmalingam, S., Nagarajan, R., & Santulli, C. (2022). Wear properties and post-moisture absorption mechanical behavior of kenaf/banana-fiber-reinforced epoxy composites. Fibers, 10(4), 32.

Ahead of Print Subscription Original Research
Volume 13
05
Received 30/04/2025
Accepted 04/07/2025
Published 11/07/2025
Publication Time 72 Days


Login


My IP

PlumX Metrics