Perspectives of 3D-Printed Polylactic Acid-Based Composites Reinforced with Natural Fibers

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 13 | 05 | Page : –
    By

    R Meenakshi Reddy,

  • P. Piramanayagam,

  • G. Sabarinathan,

  • Rayi Krupadanam,

  • Jnanaranjan Acharya,

  • Surrya Prakash Dillibabu,

  • Beporam Iftekhar Hussain,

  • Dinesh Babu R,

  1. Associate professor, Department of Mechanical Engineering, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, India
  2. Assistant Professor, Department of Chemistry, KLN College of Engineering, Sivagangai, Tamil Nadu, India
  3. Associate Professor, Department of Mathematics, PSNA College of Engineering and Technology (Autonomous), Dindigul, Tamil Nadu, India
  4. Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
  5. Assistant Professor, Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, Andhra Pradesh, India
  6. Professor, Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
  7. Associate Professor, Department of Mechanical Engineering, Bapatla Engineering College, Andhra Pradesh, India
  8. Assistant Professor, Department of Mechanical Engineering, Achariya College of Engineering Technology, Puducherry,

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_196454’);});Edit Abstract & Keyword

The growing demand for sustainable and biodegradable materials has led to the development of polylactic acid (PLA)-based composites reinforced with natural fibers. This study investigates the mechanical, thermal, printability, and environmental performance of 3D-printed PLA/Natural Fiber composites, addressing key challenges in fiber-matrix compatibility, structural integrity, and biodegradability. Natural fiber reinforcement enhanced Young’s modulus and flexural strength, but excessive fiber content led to agglomeration, reduced tensile strength, and increased brittleness. Thermal analysis (TGA/DSC) confirmed that fiber addition lowered PLA’s decomposition temperature but promoted crystallization, improving heat resistance. Fused Deposition Modeling (FDM) processing challenges, such as nozzle clogging, surface roughness, and interlayer adhesion issues, were mitigated through optimized extrusion parameters. Biodegradability assessments showed accelerated degradation rates for fiber-reinforced PLA composites, though increased water absorption impacted mechanical stability. This research establishes PLA/Natural Fiber composites as viable eco-friendly alternatives to petroleum-based polymers, with future improvements focused on fiber treatments, hybrid reinforcements, and advanced process optimization for enhanced performance.

Keywords: polylactic acid, printability

How to cite this article:
R Meenakshi Reddy, P. Piramanayagam, G. Sabarinathan, Rayi Krupadanam, Jnanaranjan Acharya, Surrya Prakash Dillibabu, Beporam Iftekhar Hussain, Dinesh Babu R. Perspectives of 3D-Printed Polylactic Acid-Based Composites Reinforced with Natural Fibers. Journal of Polymer and Composites. 2025; 13(05):-.
How to cite this URL:
R Meenakshi Reddy, P. Piramanayagam, G. Sabarinathan, Rayi Krupadanam, Jnanaranjan Acharya, Surrya Prakash Dillibabu, Beporam Iftekhar Hussain, Dinesh Babu R. Perspectives of 3D-Printed Polylactic Acid-Based Composites Reinforced with Natural Fibers. Journal of Polymer and Composites. 2025; 13(05):-. Available from: https://journals.stmjournals.com/jopc/article=2025/view=0


document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_196454’);});Edit

References

  1. Taib, N. A. A. B., Rahman, M. R., Huda, D., Kuok, K. K., Hamdan, S., Bakri, M. K. B., … & Khan, A. (2023). A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 80(2), 1179-1213.
  2. Swetha, T. A., Bora, A., Mohanrasu, K., Balaji, P., Raja, R., Ponnuchamy, K., … & Arun, A. (2023). A comprehensive review on polylactic acid (PLA)–Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 234, 123715.
  3. Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164.
  4. Acharjee, S. A., Gogoi, B., Bharali, P., Sorhie, V., & Alemtoshi, B. W. (2024). Recent trends in the development of Polyhydroxyalkanoates (PHAs) based biocomposites by blending with different bio-based polymers. Journal of Polymer Research, 31(4), 98.
  5. Plamadiala, I., Croitoru, C., Pop, M. A., & Roata, I. C. (2025). Enhancing Polylactic Acid (PLA) Performance: A Review of Additives in Fused Deposition Modelling (FDM) Filaments. Polymers, 17(2), 191.
  6. Aliheidari, N., Christ, J., Tripuraneni, R., Nadimpalli, S., & Ameli, A. (2018). Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Materials & Design, 156, 351-361.
  7. Grubbs, J., Sousa, B. C., & Cote, D. L. (2023). Establishing a Framework for Fused Filament Fabrication Process Optimization: A Case Study with PLA Filaments. Polymers, 15(8), 1945.
  8. Khouri, N. G., Bahú, J. O., Blanco-Llamero, C., Severino, P., Concha, V. O., & Souto, E. B. (2024). Polylactic acid (PLA): Properties, synthesis, and biomedical applications-A review of the literature. Journal of Molecular Structure, 138243.
  9. Ilyas, R. A., Zuhri, M. Y. M., Aisyah, H. A., Asyraf, M. R. M., Hassan, S. A., Zainudin, E. S., … & Sari, N. H. (2022). Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1), 202.
  10. Praveena, B. A., Buradi, A., Santhosh, N., Vasu, V. K., Hatgundi, J., & Huliya, D. (2022). Study on characterization of mechanical, thermal properties, machinability and biodegradability of natural fiber reinforced polymer composites and its Applications, recent developments and future potentials: A comprehensive review. Materials Today: Proceedings, 52, 1255-1259.
  11. Lu, T., Liu, S., Jiang, M., Xu, X., Wang, Y., Wang, Z., … & Zhou, Z. (2014). Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Composites Part B: Engineering, 62, 191-197.
  12. Rajeshkumar, G., Seshadri, S. A., Devnani, G. L., Sanjay, M. R., Siengchin, S., Maran, J. P., … & Anuf, A. R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483.
  13. Vinay, D. L., Keshavamurthy, R., & Tambrallimath, V. (2023). Enhanced mechanical properties of metal filled 3D printed polymer composites. Journal of The Institution of Engineers (India): Series D, 104(1), 181-195.
  14. Gigante, V., Gallone, G., Aliotta, L., & Lazzeri, A. (2024). Twin-screw extrusion optimization and study of morphological, thermal, mechanical and fracture properties of sustainable Poly (lactic acid)(PLA) and Poly (butylene sebacate)(PBSe) blends. Materials Today Sustainability, 28, 100953.
  15. Quodbach, J., Bogdahn, M., Breitkreutz, J., Chamberlain, R., Eggenreich, K., Elia, A. G., … & Spitz, T. (2021). Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Therapeutic Innovation & Regulatory Science, 1-19.
  16. Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., & Abdullah, L. C. (2021). Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review. Polymers, 13(9), 1407.
  17. Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., … & Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326.
  18. Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites science and technology, 63(9), 1317-1324.
  19. Sharma, R., Jang, J. G., & Bansal, P. P. (2022). A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete. Journal of Building Engineering, 45, 103314.
  20. Hemmati, F., Farizeh, T., & Mohammadi-Roshandeh, J. (2021). Lignocellulosic fiber-reinforced PLA green composites: effects of chemical fiber treatment. Biocomposite Materials: Design and Mechanical Properties Characterization, 97-204.
  21. Spiridon, I., Darie, R. N., & Kangas, H. (2016). Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 92, 19-27.
  22. Wang, L., Wang, Y. N., Huang, Z. G., & Weng, Y. X. (2015). Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Materials & Design (1980-2015), 66, 7-15.
  23. Kumartasli, S., & Avinc, O. (2025). Biodegradability, soil burial, and antimicrobial properties of the PLA-based biocomposites and bionanocomposites. In Natural Fiber-Reinforced PLA Composites(pp. 159-186). Woodhead Publishing.
  24. Alvarez, V. A., & Vázquez, A. (2006). Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 37(10), 1672-1680.
  25. Antelava, A., Damilos, S., Hafeez, S., Manos, G., Al-Salem, S. M., Sharma, B. K., … & Constantinou, A. (2019). Plastic solid waste (PSW) in the context of life cycle assessment (LCA) and sustainable management. Environmental Management, 64, 230-244.
  26. Tugnolo, A., Giovenzana, V., Malegori, C., Oliveri, P., Casson, A., Curatitoli, M., … & Beghi, R. (2021). A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. Food Control, 130, 108312.
  27. Olonisakin, K., Lin, H., Haojin, P., Aishi, W., Wang, H., Li, R., … & Yang, W. (2024). Fiber treatment impact on toughness and interfacial bonding in epoxidized soya bean oil compatibilized PLA/PBAT bamboo fiber composites. Materials Today Communications, 38, 107790.
  28. Shirmohammadi, M., Goushchi, S. J., & Keshtiban, P. M. (2021). Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Progress in Additive Manufacturing, 6, 199-215.
  29. Banerjee, A., Jha, K., Kumar, R., Sharma, S., Rangappa, S. M., Siengchin, S., … & Abbas, M. (2025). Unveiling of mechanical, morphological, and thermal characteristics of alkali-treated flax and pine cone fiber-reinforced polylactic acid (PLA) composites: fabrication and characterizations. Biomass Conversion and Biorefinery, 1-28.
  30. Ahmed, M. M., Dhakal, H. N., Zhang, Z. Y., Barouni, A., & Zahari, R. (2021). Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Composite Structures, 259, 113496.
  31. Sharma, A., Mukhopadhyay, T., Rangappa, S. M., Siengchin, S., & Kushvaha, V. (2022). Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Archives of Computational Methods in Engineering, 29(5), 3341-3385.
  32. Rajeshkumar, G., Seshadri, S. A., Devnani, G. L., Sanjay, M. R., Siengchin, S., Maran, J. P., … & Anuf, A. R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483.
  33. Khalili, P., Liu, X., Zhao, Z., & Blinzler, B. (2019). Fully biodegradable composites: Thermal, flammability, moisture absorption and mechanical properties of Natural fibre-reinforced composites with nano-hydroxyapatite. Materials, 12(7), 1145.
  34. Agaliotis, E. M., Ake-Concha, B. D., May-Pat, A., Morales-Arias, J. P., Bernal, C., Valadez-Gonzalez, A., … & Flores-Johnson, E. A. (2022). Tensile behavior of 3D printed polylactic acid (PLA) based composites reinforced with natural fiber. Polymers, 14(19), 3976.
  35. Mortazavian, S., & Fatemi, A. (2015). Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites. Composites part B: engineering, 72, 116-129.
  36. Li, V. C., & Wang, S. (2002). Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams. Materials Journal, 99(1), 11-21.
  37. Yiga, V. A., Lubwama, M., & Olupot, P. W. (2022). Thermal stability of unmodified and alkali-modified rice husks for flame retardant fiber-reinforced PLA composites. Journal of Thermal Analysis and Calorimetry, 147(20), 11049-11075.
  38. Khalili, P., Liu, X., Zhao, Z., & Blinzler, B. (2019). Fully biodegradable composites: Thermal, flammability, moisture absorption and mechanical properties of Natural fibre-reinforced composites with nano-hydroxyapatite. Materials, 12(7), 1145.
  39. Rajeshkumar, G., Seshadri, S. A., Devnani, G. L., Sanjay, M. R., Siengchin, S., Maran, J. P., … & Anuf, A. R. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review. Journal of Cleaner Production, 310, 127483.
  40. Page, J., Khadraoui, F., Gomina, M., & Boutouil, M. (2019). Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Construction and Building Materials, 199, 424-434.
  41. Sumesh, K. R., Palanisamy, S., Khan, T., Ajithram, A., & Ahmed, O. S. (2024). Mechanical, morphological and wear resistance of natural fiber/glass fiber-based polymer composites. BioResources, 19(2), 3271-3289.
  42. Palanisamy, S., Kalimuthu, M., Palaniappan, M., Alavudeen, A., Rajini, N., Santulli, C., … & Al-Lohedan, H. (2022). Characterization of acacia caesia bark fibers (ACBFs). Journal of Natural Fibers, 19(15), 10241-10252.
  43. Almeshaal, M., Palanisamy, S., Murugesan, T. M., Palaniappan, M., & Santulli, C. (2022). Physico-chemical characterization of Grewia Monticola Sond (GMS) fibers for prospective application in biocomposites. Journal of Natural Fibers, 19(17), 15276-15290.
  44. Palaniappan, M., Palanisamy, S., Murugesan, T. M., Alrasheedi, N. H., Ataya, S., Tadepalli, S., & Elfar, A. A. (2025). Novel Ficus retusa L. aerial root fiber: a sustainable alternative for synthetic fibres in polymer composites reinforcement. Biomass Conversion and Biorefinery, 15(5), 7585-7601.
  45. Palanisamy, S., Kalimuthu, M., Santulli, C., Palaniappan, M., Nagarajan, R., & Fragassa, C. (2023). Tailoring epoxy composites with Acacia caesia bark fibers: Evaluating the effects of fiber amount and length on material characteristics. Fibers, 11(7), 63.
  46. Palanisamy, S., Keerthiveetil Ramakrishnan, S., Santulli, C., Khan, T., & Ahmed, O. S. (2024). Mechanical and wear performance evaluation of natural fiber/epoxy matrix composites. BioResources, 19(4), 845.
  47. Palanisamy, S., Kalimuthu, M., Azeez, A., Palaniappan, M., Dharmalingam, S., Nagarajan, R., & Santulli, C. (2022). Wear properties and post-moisture absorption mechanical behavior of kenaf/banana-fiber-reinforced epoxy composites. Fibers, 10(4), 32.

Ahead of Print Subscription Original Research
Volume 13
05
Received 23/03/2025
Accepted 04/07/2025
Published 11/07/2025
Publication Time 110 Days

[last_name]

My IP

PlumX Metrics