Nano Graphene Oxide Synthesis, Characterization, and Application in Thermoplastics

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 16 | 02 | Page : –
    By

    Pradeep Uthale,

  • Sandeep Rai,

  1. Application Manger, Dyne Chemicals LLP, 3312/18, Chhatral GIDC, Phase-IV, Taluka – Kalol, District – Gandhinagar, Gujarat, India
  2. General Manager, R&D, Dyne Chemicals LLP, 3312/18, Chhatral GIDC, Phase-IV, Taluka – Kalol, District – Gandhinagar, Gujarat, India

Abstract

The derivative graphene oxide (GO) is made of graphene, which is a layer of carbon atoms organized in a hexagonal lattice that is one atom thick. Graphene oxide possess remarkable properties like high surface area, excellent mechanical strength, and electrical conductivity, making GO a material of interest for a wide range of applications. The synthesis of nano graphene oxide (nGO) involves oxidation that introduce oxygen functional groups onto the surface of the graphene sheet, making it dispersible in water and other solvents. This review article will provide an in-depth exploration of the various methods for synthesizing nano graphene oxide, the characterization techniques used to analyse its properties, and its potential applications in thermoplastics. The focus will be on how nano graphene oxide can be integrated into thermoplastics to enhance their mechanical, electrical, and thermal properties, thus opening new opportunities for their use in various industries.

Keywords: Graphite, Nano Graphene Oxide, Thermoplastics, Thermoplastics Composites,

How to cite this article:
Pradeep Uthale, Sandeep Rai. Nano Graphene Oxide Synthesis, Characterization, and Application in Thermoplastics. Journal of Modern Chemistry & Chemical Technology. 2025; 16(02):-.
How to cite this URL:
Pradeep Uthale, Sandeep Rai. Nano Graphene Oxide Synthesis, Characterization, and Application in Thermoplastics. Journal of Modern Chemistry & Chemical Technology. 2025; 16(02):-. Available from: https://journals.stmjournals.com/jomcct/article=2025/view=202768



References

  1. Shirong Shuai, Yu Liu, Cong Zhao, Hongyu Zhu, Yang Li, Kanghong Zhou, Wei Ge, Jianyuan Hao,Improved synthesis of graphene oxide with controlled oxidation degree by using different dihydrogen phosphate as intercalators,Chemical Physics, Volume 539, 2020, 110938, ISSN 0301-0104, https://doi.org/10.1016/j.chemphys.2020.110938.
  2. Songfeng Pei, Hui-Ming Cheng, The reduction of graphene oxide, Carbon, Volume 50, Issue 9, 2012, Pages 3210-3228, ISSN 0008-6223, https://doi.org/10.1016/j.carbon.2011.11.010. (https://www.sciencedirect.com/science/article/pii/S0008622311008967)
  3. I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, Wei-Wen Liu, C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering, Volume 184, 2017, Pages 469-477, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2017.04.118. (https://www.sciencedirect.com/science/article/pii/S1877705817316235)
  4. Qingtao Yu, Luo Wei, Xiaoyong Yang, Chong Wang, Jikun Chen, Hongda Du, Wanci Shen, Feiyu Kang, Zheng-Hong Huang, Electrochemical synthesis of graphene oxide from graphite flakes exfoliated at room temperature, Applied Surface Science, Volume 598, 2022,
  5. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang, and Richard B. KanerACS Nano2010 4 (7), 3845-3852 DOI: 10.1021/nn100511a
  6. Zhihao Zhang, Hannes C. Schniepp, Douglas H. Adamson, Characterization of graphene oxide: Variations in reported approaches, Carbon, Volume 154, 2019, Pages 510-521,ISSN 0008-6223,https://doi.org/10.1016/j.carbon.2019.07.103. (https://www.sciencedirect.com/science/article/pii/S0008622319307961)
  7. arah, Abdullahi & Force Tefo, Thema & Dikio, Ezekiel. (2012). Electrochemical Detection of Hydrogen Peroxide Based on Graphene Oxide/Prussian Blue Modified Glassy Carbon Electrode. International Journal of Electrochemical Science. 7. 5069-5083. 10.1016/S1452-3981(23)19604-0.
  8. Wu, Shaoling & Zhao, Xindong & Li, Yan-Hui & Du, Qiuju & Sun, Jian-Kun & Wang, Yonghao & Wang, Xin & Xia, Yanzhi & Wang, Zonghua & Xia, Linhua. (2013). Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. Materials. 6. 2026-2042. 10.3390/ma6052026.
  9. Obraztsova EA, Osadchy AV, Obraztsova ED, Lefrant S, Yaminsky IV. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. physica status solidi (b). 2008 Oct;245(10):2055-9.
  10. Siburian, Rikson & Sihotang, Hotmaulina & Raja, S. & Supeno, M. & Simanjuntak, Crystina. (2018). New Route to Synthesize of Graphene Nano Sheets. Oriental Journal of Chemistry. 34. 182-187. 10.13005/ojc/340120.
  11. Çiplak, Zafer & Karabudak Yildiz, Nuray & Çalimli, Ayla. (2014). Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods. Fullerenes, Nanotubes and Carbon Nanostructures. 23. 361-370. 10.1080/1536383X.2014.894025.
  12. Childres I, Jauregui LA, Park W, Cao H, Chen YP. Raman spectroscopy of graphene and related materials. New developments in photon and materials research. 2013 Jan 1;1:1-20.
  13. Alessandro Kovtun, Derek Jones, Simone Dell’Elce, Emanuele Treossi, Andrea Liscio, Vincenzo Palermo, Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy, Carbon, Volume 143, 2019, Pages 268-275, ISSN 0008-6223, https://doi.org/10.1016/j.carbon.2018.11.012. (https://www.sciencedirect.com/science/article/pii/S0008622318310297)
  14. Tiwari, S.K.; Verma, K.; Saren, P.; Oraon, R.; De Adhikari, A.; Nayak, G.C.; Kumar, V. Manipulating selective dispersion of reduced graphene oxide in polycarbonate/nylon 66 based blend nanocomposites for improved thermo-mechanical properties. RSC Adv.2017, 7, 22145–22155. [Google Scholar] [CrossRef]
  15. Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez-Manchado, M.A. Graphene filled polymer nanocomposites.  Mater. Chem.2011, 21, 3301–3310. [Google Scholar] [CrossRef] [Green Version]
  16. Martin-Gallego, M.; Bernal, M.M.; Hernandez, M.; Verdejo, R.; Lopez-Manchado, M.A. Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites.  Polym. J.2013, 49, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
  17. Shakir, M.F.; Khan, A.N.; Khan, R.; Javed, S.; Tariq, A.; Azeem, M.; Riaz, A.; Shafqat, A.; Cheema, H.M.; Akram, M.A.; et al. EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys.2019, 14, 102365. [Google Scholar] [CrossRef]
  18. Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace.  Technol.2020, 16, 107–118. [Google Scholar] [CrossRef]
  19. Tzounis, L.; Petousis, M.; Grammatikos, S.; Vidakis, N. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics. Materials2020, 13, 2879. [Google Scholar] [CrossRef]
  20. Franta, I. Chapter 1—Introductory Part. In Elastomers and Rubber Compounding Materials; Franta, I., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 1, pp. 19–30. ISSN 0922-5579. [Google Scholar]
  21. Aguilar-Bolados, H.; Yazdani-Pedram, M.; Verdejo, R. Thermal, electrical, and sensing properties of rubber nanocomposites. In High-Performance Elastomeric Materials Reinforced by Nano-Carbons; Valentini, L., Lopez-Manchado, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–175. [Google Scholar] [CrossRef]
  22. Nozaki, S.; Masuda, S.; Kamitani, K.; Kojio, K.; Takahara, A.; Kuwamura, G.; Hasegawa, D.; Moorthi, K.; Mita, K.; Yamasaki, S. Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure. Macromolecules2017, 50, 1008–1015. [Google Scholar] [CrossRef]
  23. Aguilar Bolados, H.; Hernández-Santana, M.; Romasanta, L.J.; Yazdani-Pedram, M.; Quijada, R.; López-Manchado, M.A.; Verdejo, R. Electro-mechanical actuation performance of SEBS/PU blends. Polymer2019, 171, 25–33. [Google Scholar] [CrossRef]
  24. Petrović, Z.S.; Ferguson, J. Polyurethane elastomers.  Polym. Sci.1991, 16, 695–836. [Google Scholar] [CrossRef]
  25. Sami, S.; Yildirim, E.; Yurtsever, M.; Yurtsever, E.; Yilgor, E.; Yilgor, I.; Wilkes, G.L. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer2014, 55, 4563–4576. [Google Scholar] [CrossRef]
  26. Maldonado-Magnere, S.; Yazdani-Pedram, M.; Aguilar-Bolados, H.; Quijada, R. Thermally Reduced Graphene Oxide/Thermoplastic Polyurethane Nanocomposites: Mechanical and Barrier Properties. Polymers2021, 13, 85. https://doi.org/10.3390/polym13010085
  27. Nazarychev, V.M. Enhanced Thermal Conductivity of Thermoplastic Polyimide Nanocomposites: Effect of Using Hexagonal Nanoparticles. Polymers2024, 16, 3231. https://doi.org/10.3390/polym16233231
  28. Mostafizur Rahaman, Rajesh Theravalappil, Subhendu Bhandari, Lalatendu Nayak, Purabi Bhagabati, 4 – Electrical conductivity of polymer-graphene composites,
  29. Mostafizur Rahaman, Lalatendu Nayak, Ibnelwaleed A Hussein, Narayan Chandra Das, In Woodhead Publishing Series in Composites Science and Engineering, Polymer Nanocomposites Containing Graphene, Woodhead Publishing, 2022, Pages 107-139, ISBN 9780128216392, https://doi.org/10.1016/B978-0-12-821639-2.00025-2. ,(https://www.sciencedirect.com/science/article/pii/B9780128216392000252)
  30. Enhancement of Thermal and Gas Barrier Properties of Graphene-Based Nanocomposite Films Jaweria Ashfaq, Iftikhar Ahmed Channa, Abdul Ghaffar Memon, Irfan Ali Chandio, Ali Dad Chandio, Muhammad Ali Shar, Mohamad S. Alsalhi, and Sandhanasamy Devanesan, ACS Omega 2023 8 (44), 41054-41063, DOI: 10.1021/acsomega.3c02885,
  31. Quanyi Liu, Yinlong Zhao, Shansong Gao, Xiong Yang, Rong Fan, Maoyong Zhi, Ming Fu, Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials, Composites Part A: Applied Science and Manufacturing, Volume 149, 2021, 106539
  32. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective ,Hazel Lin, Tina Buerki-Thurnherr, Jasreen Kaur, Peter Wick, Marco Pelin, Aurelia Tubaro, Fabio Candotto Carniel, Mauro Tretiach, Emmanuel Flahaut, Daniel Iglesias, Ester Vázquez, Giada Cellot, Laura Ballerini, Valentina Castagnola, Fabio Benfenati, Andrea Armirotti, Antoine Sallustrau, Frédéric Taran, Mathilde Keck, Cyrill Bussy, Sandra Vranic, Kostas Kostarelos, Mona Connolly, José Maria Navas, Florence Mouchet, Laury Gauthier, James Baker, Blanca Suarez-Merino, Tomi Kanerva, Maurizio Prato, Bengt Fadeel, and Alberto Bianco, ACS Nano2024 18 (8), 6038-6094, DOI: 10.1021/acsnano.3c09699

Ahead of Print Subscription Review Article
Volume 16
02
Received 15/02/2025
Accepted 21/02/2025
Published 04/03/2025
Publication Time 17 Days


My IP

PlumX Metrics