Role of Electron Donors in MgCl2 Supported Ziegler-Natta Catalysis: DFT Approach

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 16 | 02 | Page : –
    By

    Jugal Kumawat,

  • Parthiv Trivedi,

  • Virendrakumar Gupta,

  1. Postdoctoral Researcher, Department of Chemistry and Biochemistry, Brigham Young University, Provo 84604, Utah, United States
  2. Lead Scientist, Polymer Synthesis & Catalysis Group, Reliance Research and Development Centre, Reliance Industries Limited, Navi Mumbai- 400701, Maharashtra, India
  3. Senior Vice President, Polymer Synthesis & Catalysis Group, Reliance Research and Development Centre, Reliance Industries Limited, Navi Mumbai- 400701, Maharashtra, India

Abstract

An insight into the nature of carbonate-based electron donors in high-activity MgCl2 supported Ziegler-Natta (Z-N) catalysts has been studied and compared with conventional phthalate and diether systems by employing density functional theory (DFT) calculations. In the catalyst activation (one of the important processes to produce the active catalyst sites), the conventional monometallic and recently characterized bimetallic (TiCl2(Et)–Cl–AlEt2) active site are studied in the presence/absence of electron donors. These active sites were further investigated for olefin polymerization mechanisms using internal donor (ID) and with/without external donor (ED), dicyclopentadiene(dimethoxy)silane (DCPDMS). The current study also reveals that adding an alkoxysilane ED in Z-N improves the regio- and stereoselective behaviour and molecular weight of the polymer. Also, noncovalent interactions (NCIs) between the donor and the MgCl2 surface and/or titanium catalyst are significant in investigating the ID effect in Z-N. The hydrogen response for all the donor catalyst systems was also studied and compared with conventional diisobutyl phthalate (DIBP) and diether donors. Therefore, these chemical calculations provide useful insight in understanding the nature of active sites and olefin polymerization mechanisms in Z–N.

Keywords: Ziegler-Natta olefin polymerization, DFT, Noncovalent interaction, Regio- and stereoselectivity, Ester/Carbonate donors

How to cite this article:
Jugal Kumawat, Parthiv Trivedi, Virendrakumar Gupta. Role of Electron Donors in MgCl2 Supported Ziegler-Natta Catalysis: DFT Approach. Journal of Modern Chemistry & Chemical Technology. 2025; 16(02):-.
How to cite this URL:
Jugal Kumawat, Parthiv Trivedi, Virendrakumar Gupta. Role of Electron Donors in MgCl2 Supported Ziegler-Natta Catalysis: DFT Approach. Journal of Modern Chemistry & Chemical Technology. 2025; 16(02):-. Available from: https://journals.stmjournals.com/jomcct/article=2025/view=201183



References

[1]      K. Ziegler, H. G. Gellert, K. Zosel, W. Lehmkuhl, W. Pfohl, Angew. Chem. Int. Ed. 1955, 67, 424.

[2]       K. Ziegler, E. Holzkamp, H. Breil, H. Martin, Angew. Chem. 1955, 67, 541.

[3]       G. Natta, J. Poly.Sci. 1955, 16, 143.

[4]       G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, J.  Am. Chem. Soc. 1955, 77, 1708.

[5]       N. Kashiwa, H. Fujimura, Y. Tokuzumi, JP Patent, 1031698, 1968.

[6]       N. Kashiwa, J. Poly. Sci. A: Poly. Chem. 2004, 42, 1.

[7]        L. Luciani, N. Kashiwa, C. Barbe, A. Toyota, JP151691, 1977.

[8]        J. M. Silveira, H. Chikuma, G. Takasao, T. Wada, P. Chammingkwan, T. Taniike, ACS Catal. 2024, 14, 2300.

[9]       L. Brambilla, G. Zerbi, F. Piemontesi, S. Nascetti, G. Morini, J. Phys. Chem. C, 2010, 114, 11475.

[10]     P. Brant, A. N. Speca, Macromol. 1987, 20, 2740.

[11]     V. Busico, R. Cipullo, G. Monaco, M. Vacatello, A. L. Segre, Macromol. 1997, 30, 6251.

[12]     M. D’Amore, K. S. Thushara, A. Piovano, M. Causà , S. Bordiga, E. Groppo, ACS Catal. 2016, 6, 5786.

[13]     Q. Niu, A. He, C. Si, G. Liu, M. Xiao, G. Chen, M. Jin, Polymer 2024, 307, 127317.

[14]     G. Singh, S. Kaur, U. Makwana, R. B. Patankar, V. K. Gupta, Macromol. Chem. Phys. 2009, 210, 69.

[15]     Y. V. Kissin, L. A. Rishina, J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1353.

[16]     P. M. Trivedi, V. K. Gupta, J. Poly. Res. 2021, 28, 45.

[17]     J. Kumawat, V. K. Gupta, Poly. Chem. 2020, 11, 6107.

[18]     E. I. Koshevoy, T. B. Mikenas, V. A. Zakharov, A. A. Shubin, A. A. Barabanov, The J. Phys. Chem. C 2016, 120, 1121.

[19]     R. Bazvand, N. Bahri-Laleh, M. Nekoomanesh, H. Abedini, Design. Monom. and Poly. 2015, 18, 599.

[20]     V. N. Panchenko, A. N. Goryachev, L. V. Vorontsova, E. A. Paukshtis, V. A. Zakharov, J. Phys. Chem. C 2014, 118, 28572.

[21]     M. Abazari, R. Jamjah, N. Bahri-Laleh, A. Hanifpour, Poly. Bulletin 2021, 79, 7265.

[22]     P. M. Trivedi, C. P. Gocher, V. Balachandran, V. K. Gupta, J. Appl. Poly. Sci. 2023, 140, e53609.

[23]     J. Kumawat, V. K. Gupta, In silico Approaches to Macromolecular Chemistry (Eds.: M. E. Thomas, J. Thomas, S. Thomas, H. Kornweitz), Elsevier, 2023, 313.

[24]     J. Kumawat, V. K. Gupta, K. Vanka, Organometallics 2014, 33, 4357.

[25]     J. Kumawat, V. K. Gupta, K. Vanka, ChemCatChem 2016, 8, 1809.

[26]     J. Kumawat, V. K. Gupta, K. Vanka, Eur. J. Inorg. Chem. 2014, 2014, 5063.

[27]     N. Bahri-Laleh, A. Correa, S. M.-Ataei, H. Arabi, M. N. Haghighi, G. Zohuri, L. Cavallo, Macromol. 2011, 44, 778.

[28]     L. Cavallo, S. Del Piero, J.-M. Ducere, R. Fedele, A. Melchior, G. Morini, F. Piemontesi, M. Tolazzi, J. Phys. Chem. C 2007, 111, 4412.

[29]     R. Credendino, D. Liguori, Z. Fan, G. Morini, L. Cavallo, ACS Catal. 2015, 5, 5431.

[30]     A. Correa, R. Credendino, J. T. M. Pater, G. Morini, L. Cavallo, Macromol. 2012, 45, 3695.

[31]     A. Correa, F. Piemontesi, G. Morini, L. Cavallo, Macromol. 2007, 40, 9181.

[32]     R. Credendino, D. Liguori, G. Morini, L. Cavallo, J. Phys. Chem. C 2014, 118, 8050.

[33]      K. V. Raj, J. Kumawat, S. Dhamaniya, M. Subaramanian, E. Balaraman, V. K. Gupta, K. Vanka, R. H. Grubbs, ChemCatChem 2021, 13, 674.

[34]     J. Kumawat, V. K. Gupta, K. Vanka, The J. Phy. Chem. C 2018, 122, 285.

[35]     P. Zorve, M. Linnolahti, Mol. Catal. 2021, 499, 111314.

[36]     N. Bahri-Laleh, A. Hanifpour, S. A. Mirmohammadi, A. Poater, M. Nekoomanesh-Haghighi, G. Talarico, L. Cavallo, Prog. Poly. Sci. 2018, 84, 89.

[37]     A. S. Bazhenov, P. Denifl, T. Leinonen, A. Pakkanen, M. Linnolahti, T. A. Pakkanen, J. Phys. Chem. C 2014, 118, 27878.

[38]     T. Wondimagegn, T. Ziegler, The J. Phys. Chem. C 2012, 116, 1027.

[39]     M. Seth, P. M. Margl, T. Ziegler, Macromol. 2002, 35, 7815.

[40]     M. Seth, T. Ziegler, Macromol. 2004, 37, 9191.

[41]     M. Seth, T. Ziegler, Macromol. 2003, 36, 6613.

[42]      A. G. Potapov, G. D. Bukatov, V. A. Zakharov, J. Mol. Catal. A: Chem. 2009, 301, 18.

[43]      V. Busico, P. Corradini, L. De Martino, A. Proto, V. Savino, E. Albizzati, Makromol. Chem. 1985, 186, 1279.

[44]      A. G. Potapov, G. D. Bukatov, V. A. Zakharov, J. Mol. Catal. A: Chem. 2010, 316, 95.

[45]      B. G. Song, S.-K. Ihm, J. Appl. Polym. Sci. 2014, 131.

[46]      E. S. M. Blaakmeer, G. Antinucci, E. R. H. van Eck, A. P. M. Kentgens, The J. Phy. Chem. C 2018, 122, 17865.

[47]      E. Breuza, G. Antinucci, P. H. M. Budzelaar, V. Busico, A. Correa, C. Ehm, The J. Phy. Chem. C 2018, 122, 9046.

[48]      R. Credendino, J. T. M. Pater, A. Correa, G. Morini, L. Cavallo, The J. Phys. Chem. C 2011, 115, 13322.

[49]      J. C. Chadwick, G. Morini, E. Albizzati, G. Balbontin, I. Mingozzi, A. Cristofori, O. Sudmeijer, G. M. M. Van Kessel, Macromol. Chem. Phys. 1996, 197, 2501.

[50]     E. S. M. Blaakmeer, G. Antinucci, A. Correa, V. Busico, E. R. H. van Eck, A. P. M. Kentgens, The J. Phy. Chem. C 2018, 122, 5525.

[51]      X. Wen, M. Ji, Q. Yi, H. Niu, J.-Y. Dong, J. Appl. Polym. Sci. 2010, 118, 1853.

[52]      K. Matsunaga, H. Hashida, T. Tsutsui, K. Yamamoto, A. Shibahara, T. Shinozaki, US Patent 7,888,438 2011.

[53]      P. Liang, W. Li, Y. Chen, C. Dong, Q. Zhou, Y. Feng, M. Chen, J. Dai, C. Ren, B. Jiang, J. Wang, Y. Yang, ACS Catal. 2021, 11, 4411.

[53]      E. Grau, A. Lesage, S. Norsic, C. Copéret, V. Monteil, P. Sautet, ACS Catal. 2013, 3, 52.

[54]      X.-r. Shen, Z.-s. Fu, J. Hu, Q. Wang, Z.-q. Fan, J. Phys. Chem. C 2013, 117, 15174.

[55]      A. Zhao, J. Liu, R. Zhou, X. Yang, A. He, Comput. and Theo. Chem. 2024, 114661.

[56]      V. Khatri, U. Sahoo, S. Kaur, R. Rani, G. Singh, G. S. Kapur, H. K. Kashyap, New J. Chem. 2020, 44, 6845.

[57]      J. C. Chadwick, A. Miedema, O. Sudmeijer, Macromol. Chem. Phys. 1994, 195, 167.

[58]      J. C. Chadwick, G. Morini, G. Balbontin, I. Camurati, J. J. R. Heere, I. Mingozzi, F. Testoni, Macromol. Chem. Phys. 2001, 202, 1995.

[59]     A. Vittoria, A. Meppelder, N. Friederichs, V. Busico, R. Cipullo, ACS Catal. 2020, 10, 644.

[60]      J. Zhang, F. Nan, H. Yu, S. Zhang, X. Xia, Q. Huang, J. Yi, H. Li, Z. Zhao, Ind. Eng. Chem. Res. 2020, 59, 8995.

[61]      J. N. Coalter III, T. W. Leung, T. Tao, K. Gao, Dow Global Techn. Inc., US 8633126, 2010.

[62]      A. Matta, P. Chammingkwan, B. K. Singh, M. Terano, T. Kaneko, T. Taniike, Appli. Catal. A: Gen. 2018, 554, 80.

[63]      J. Kumawat, P. Trivedi, V. K. Gupta, J. Phys. Chem. C 2019, 123, 24501.

[64]      V. H. Nissinen, M. Linnolahti, A. S. Bazhenov, T. T. Pakkanen, T. A. Pakkanen, P. Denifl, T. Leinonen, K. Jayaratne, A. Pakkanen, J. Phys. Chem. C 2017, 121, 23413.

[65]      M. Ratanasak, J.-y. Hasegawa, V. Parasuk, Polymers 2020, 12, 883.

[66]      Y. Dangat, S. Popli, R. B. Sunoj, J. Am. Chem. Soc. 2020, 142, 17079.

[67]      Y. Reddi, C.-C. Tsai, C. M. Avila, F. D. Toste, R. B. Sunoj, J. Am. Chem. Soc. 2019, 141, 998.

[68]      B. Bhaskararao, R. B. Sunoj, Chem. Sci. 2018, 9, 8738.

[69]      R. N. Straker, Q. Peng, A. Mekareeya, R. S. Paton, E. A. Anderson, Nat. Comm. 2016, 7, 10109.

[70]      A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637-646;

[71]      J. P. Wagner, P. R. Schreiner, Angew. Chem. Intern. Ed. 2015, 54, 12274.

[72]      D. V. Stukalov, V. A. Zakharov, J. Phys. Chem. C 2009, 113, 21376.

[73]      A. Ashuiev, M. Humbert, S. Norsic, J. Blahut, D. Gajan, K. Searles, D. Klose, A. Lesage, G. Pintacuda, J. Raynaud, V. Monteil, C. Copéret, G. Jeschke, J. Am. Chem. Soc. 2021, 143, 9791.

[74]      U. C. Makwana, V. Gupta, J. Macromol. Sci. Part A 2021, 1.

[75]      A. Yakimov, J. Xu, K. Searles, W.-C. Liao, G. Antinucci, N. Friederichs, V. Busico, C. Copéret, J. Phys. Chem. C 2021, 125, 15994.

[76]      R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, Chem. Phys. Lett. 1989, 162, 165.

[77]      A. D. Becke, Phys. Rev. A 1988, 38, 3098.

[78]      J. P. Perdew, Phys. Rev. B 1986, 33, 8822.

[79]      J. P. Perdew, Phys. Rev. B 1986, 34, 7406.

[80]      Y. Zhao, D. G. Truhlar, Theo. Chem. Account. 2008, 120, 215.

[81]      M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.;, M. A. C. Robb, J. R.; Scalmani, G.; Barone, V.; Petersson,, H. L. G. A.; Nakatsuji, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;, B. G. G. Janesko, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J., A. F. S. V.; Izmaylov, J. L.; Williams-Young, D.; Ding, F.;, F. E. Lipparini, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson,, D. Z. T.; Ranasinghe, V. G.; Gao, J.; Rega, N.; Zheng, G.;, W. H. Liang, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;, M. N. Ishida, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;, K. M. Throssell, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;, M. J. H. Bearpark, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,, T. A. K. V. N.; Keith, R.; Normand, J.; Raghavachari, K.;, A. P. B. Rendell, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;, J. M. K. Millam, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;, R. L. M. Martin, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford CT, 2016.

[82]      K. Eichkorn, O. Treutler, H. Oehm, M. Haeser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283.

[83]      M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136.

[84]      K. Fukui, Account. Chem. Res. 1981, 14, 363.

[85]      M. Linnolahti, T. A. Pakkanen, A. S. Bazhenov, P. Denifl, T. Leinonen, A. Pakkanen, J. Catal. 2017, 353, 89.

[86]      P. Zorve, M. Linnolahti, ACS Omega 2018, 3, 9921.

[87]      E. J. Arlman, P. Cossee, J. Catal. 1964, 3, 99.

[88]      P. Cossee, J. Catal. 1964, 3, 80.

[36]      G. Talarico, P. H. M. Budzelaar, Organometallics 2008, 27, 4098.

[89]      G. Talarico, P. H. M. Budzelaar, J. Am. Chem. Soc. 2006, 128, 4524.

[90]      G. Talarico, A. N. J. Blok, T. K. Woo, L. Cavallo, Organometallics 2002, 21, 4939.

[91]      Y. V. Kissin, L. A. Rishina, E. I. Vizen, J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1899.

[92]      J. C. Chadwick, F. P. T. J. Van der Burgt, S. Rastogi, V. Busico, R. Cipullo, G. Talarico, J. J. R. Heere, Macromol. 2004, 37, 9722.

[93]      V. Busico, J. C. Chadwick, R. Cipullo, S. Ronca, G. Talarico, Macromol. 2004, 37, 7437.

[94]      P. Corradini, G. Guerra, L. Cavallo, Account. Chem. Res. 2004, 37, 231.

[95]      M. C. Sacchi, F. Forlini, I. Tritto, R. Mendichi, G. Zannoni, L. Noristi, Macromol. 1992, 25, 5914.

[96]      M. C. Sacchi, I. Tritto, C. Shan, R. Mendichi, L. Noristi, Macromol. 1991, 24, 6823.

[97]      Y. Weng, B. Jiang, Z. Fu, Z. Fan, J. Appl. Poly. Sci. 2018, 135, 46605.

[98]      T. Niyomthai, B. Jongsomjit, P. Praserthdam, Eng. J. 2017, 21, 171.



 


Ahead of Print Subscription Original Research
Volume 16
02
Received 06/01/2025
Accepted 12/02/2025
Published 20/02/2025
Publication Time 45 Days


My IP

PlumX Metrics