Biomarkers in Cancer Research: Discovery and Future Directions


Year : 2025 | Volume : | | Page : –
    By

    Kannan Jakkan,

  • Nithya Sri Pandi,

  • Yoghashri D,

  • Hema D,

  • Sathish Kumar JD,

  • Udhayanithi B,

  1. Senior Director, Quality Control at Novitium Pharma LLC, New Jersey, India
  2. Professor, Department of Pharmaceutics Research Laboratory, Cherraan’s college of Pharmacy, Coimbatore, Tamil Nadu, India
  3. Professor, Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
  4. Professor, Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
  5. Professor, Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai,, Tamil Nadu, India
  6. Professor, Department of Pharmacy Practice,Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India

Abstract

Biomarkers have transformed the study of cancer, providing critical information regarding prognosis and therapy response and promoting earlier diagnosis. This paper discusses the different parts of cancer biomarkers, starting with their description, classification, and major types, which are the groundwork for understanding their clinical role. The discussion on the development and validation process of biomarkers is then undertaken, focusing on state-of-the-art techniques and the importance of ensuring accuracy and reproducibility. Future developments in cancer research are to combine biomarkers with cutting-edge technologies to make possible tailored treatments and better treatment results. Integration of artificial intelligence and machine learning is revolutionizing biomarker discovery, allowing the analysis of complex datasets to identify new targets and accelerate drug development. This comprehensive review, in the era of precision oncology, underlines the importance of biomarkers and their revolutionary potential to transform cancer diagnosis and treatment.

Keywords: Cancer, Biopsy, Validation, Biomarkers, Artificial Intelligence.

How to cite this article:
Kannan Jakkan, Nithya Sri Pandi, Yoghashri D, Hema D, Sathish Kumar JD, Udhayanithi B. Biomarkers in Cancer Research: Discovery and Future Directions. Trends in Drug Delivery. 2025; ():-.
How to cite this URL:
Kannan Jakkan, Nithya Sri Pandi, Yoghashri D, Hema D, Sathish Kumar JD, Udhayanithi B. Biomarkers in Cancer Research: Discovery and Future Directions. Trends in Drug Delivery. 2025; ():-. Available from: https://journals.stmjournals.com/tdd/article=2025/view=196625


References

  1. Sarhadi, V. K., & Armengol, G. (2022). Molecular Biomarkers in Cancer. Biomolecules, 12(8), 1021. https://doi.org/10.3390/biom12081021 .
  2. Stachowicz-Stencel, T., & Synakiewicz, A. (2020). Biomarkers for Pediatric Cancer Detection: Latest Advances and Future Perspectives. Biomarkers in Medicine, 14(5), 391–400. https://doi.org/10.2217/bmm-2019-0613 .
  3. Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep. 2019 Mar;52(3):181-189. doi: 10.5483/BMBRep.2019.52.3.048.
  1. Yazdani M, Beiki Z, Jahanian A. RNA secondary structured logic gates for profiling the microRNA cancer biomarkers. IET Nanobiotechnol. 2020 May;14(3):181-190.
  2. Lamlertthon W, Hayward MC, Hayes DN. Emerging technologies for improved stratification of cancer patients: a review of opportunities, challenges, and tools. Cancer J. 2011 Nov-Dec;17(6):451-64
  3. Armakolas, A., Kotsari, M., & Koskinas, J. (2023). Liquid Biopsies, Novel Approaches and Future Directions. Cancers, 15(5), 1579. https://doi.org/10.3390/cancers15051579
  4. Marrugo-Ramírez, J., Mir, M., & Samitier, J. (2018). Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. International Journal of Molecular Sciences, 19(10), 2877. https://doi.org/10.3390/ijms19102877
  5. Taillade L, Penault-Llorca F, Boulet T, Fouret P, Michiels S, Taranchon E, Mountzios G, Validire P, Domont J, Girard P, Grunenwald D, Le Chevalier T, Soria JC. Immunohistochemichal expression of biomarkers: a comparative study between diagnostic bronchial biopsies and surgical specimens of non-small-cell lung cancer. Ann Oncol. 2007 Jun;18(6):1043-50 https://doi.org/10.1093/annonc/mdm072 .
  6. Hirahata T, Ul Quraish R, Quraish AU, Ul Quraish S, Naz M, Razzaq MA. Liquid Biopsy: A Distinctive Approach to the Diagnosis and Prognosis of Cancer. Cancer Inform. 2022 Feb 7;21:
  7. Eslami-S Z, Cortés-Hernández LE, Cayrefourcq L, Alix-Panabières The Different Facets of Liquid Biopsy: A Kaleidoscopic View. Cold Spring Harb Perspect Med. 2020 Jun 1;10(6):a037333.
  8. Arechederra M, Ávila MA, Berasain C. Liquid biopsy for cancer management: a revolutionary but still limited new tool for precision medicine. Adv Lab Med. 2020 Apr 27;1(3):20200009.
  1. Brock, , Castellanos-Rizaldos, E., Hu, L., Coticchia, C. and Skog, J., 2015. Liquid biopsy for cancer screening, patient stratification and monitoring. Translational Cancer Research, 4(3).
  2. Scarlotta M, Simsek C, Kim Liquid Biopsy in Solid Malignancy. Genet Test Mol Biomarkers. 2019 Apr;23(4):284-296.
  3. Spencer KR, Wang J, Silk AW, Ganesan S, Kaufman HL, Mehnert Biomarkers for Immunotherapy: Current Developments and Challenges. Am Soc Clin Oncol Educ Book. 2016;35:e493-503.
  4. Duffy MJ, Crown J. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clin 2019 Oct;65(10):1228- 1238.
  5. Otoshi T, Nagano T, Tachihara M, Nishimura Y. Possible Biomarkers for Cancer Immunotherapy. Cancers (Basel). 2019 Jul 3;11(7):935.
  6. Demir Karaman E, Işık Z. Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers. Med Sci (Basel). 2023 Jun 27;11(3):44.
  7. Heo YJ, Hwa C, Lee GH, Park JM, An JY. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Mol Cells. 2021 Jul 31;44(7):433-443.
  8. Raufaste-Cazavieille V, Santiago R, Droit A. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front Mol Biosci. 2022 Oct 11;9:962743
  9. Vlachavas EI, Bohn J, Ückert F, Nürnberg A Detailed Catalogue of Multi-Omics Methodologies for Identification of Putative Biomarkers and Causal Molecular Networks in Translational Cancer Research. Int J Mol Sci. 2021 Mar 10;22(6):2822.
  1. Verma Epigenetic biomarkers in cancer epidemiology. Methods Mol Biol.2012;863:467-80.
  1. García-Giménez JL, Mena-Mollá S, Beltrán-García J, Sanchis-Gomar F. Challenges in the analysis of epigenetic biomarkers in clinical Clin Chem Lab Med. 2017 Aug 28;55(10):1474-1477.
  2. Li CC, Wang ZY, Wang LJ, Zhang CY. Biosensors for epigenetic biomarkers detection: A review. Biosens Bioelectron. 2019 Nov 1;144:111695.
  3. Taj, A., Rehman, A. and Bajwa, S.Z., 2020. Biomarkers and their role in detection of biomolecules. Nanobiosensors: From design to applications, pp.73-94.
  4. Park H, Hwang MP, Lee KH. Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int J Nanomedicine. 2013;8:4543-52.
  5. Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015 Jun 15;68:688-698.
  6. Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater. 2021 Dec 24;17(1).
  7. Masi, , Antonacci, A., Moccia, M., Frisulli, V., De Felice, M., De Falco, M. and Scognamiglio, V., 2023. CRISPR-Cas assisted diagnostics: A broad application biosensing approach. TrAC Trends in Analytical Chemistry, 162, p.117028.
  8. Gong S, Zhang S, Lu F, Pan W, Li N, Tang B. CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Anal Chem. 2021 Sep 7;93(35):11899-11909.
  1. Singh, , Thakran, R., Kaushal, A., Saini, R.V., Saini, A. and Datta, S., 2024. Crispr-cas based  biosensing: A  fast-expanding  molecular  diagnostic tool. Microchemical Journal, p.110421
  1. Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens. 2021 Jul 23;6(7):2497-2522.
  2. Sarhadi VK, Armengol Molecular Biomarkers in Cancer. Biomolecules. 2022 Jul 23;12(8):1021
  3. Stachowicz-Stencel T, Synakiewicz A. Biomarkers for pediatric cancer detection: latest advances and future perspectives. Biomark Med. 2020 Apr;14(5):391-400.
  4. Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep. 2019 Mar;52(3):181-189.
  5. Yazdani M, Beiki Z, Jahanian RNA secondary structured logic gates for profiling the microRNA cancer biomarkers. IET Nanobiotechnol. 2020 May;14(3):181-190.
  6. Lamlertthon W, Hayward MC, Hayes DN. Emerging technologies for improved stratification of cancer patients: a review of opportunities, challenges, and tools. Cancer J.2011 Nov-Dec;17(6):451-64.
  7. Rade J, Zhang J, Sarkar S, Krishnamurthy A, Ren J, Sarkar Deep Learning for Live Cell Shape Detection and Automated AFM Navigation. Bioengineering (Basel). 2022 Oct 5;9(10):522.
  8. Sanchez-Morillo D, León-Jiménez A, Guerrero-Chanivet M, Jiménez-Gómez G, Hidalgo-Molina A, Campos-Caro Integrating routine blood biomarkers and artificial intelligence for supporting diagnosis of silicosis in engineered stone workers. Bioeng Transl Med. 2024; 9(6):e10694.
  1. Cai, Guangyao et al. Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study.march 2024.The Lancet Digital Health, Volume 6, Issue 3, e176 – e186.
  2. Soerensen, Patricia Diana, Christensen, Henry, Gray Worsoe Laursen, Soeren, Hardahl, Christian, Brandslund, Ivan and Madsen, Jonna Skov. “Using artificial intelligence in a primary care setting to identify patients at risk for cancer: a risk prediction model based on routine laboratory tests” Clinical Chemistry and Laboratory Medicine (CCLM), vol. 60, no. 12, 2022, pp. 2005-2016 https://doi.org/10.1515/cclm-2021-1015 .

Ahead of Print Subscription Review Article
Volume
Received 22/01/2025
Accepted 27/01/2025
Published 01/02/2025


Loading citations…