Current-Voltage Characteristics of 15-Atom AGNRs and ZCNTs at Various Bias Voltages: Insights for Polymer Nanocomposite Applications


Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : | | Page : –
    By

    Anabathula Udaya Sri,

  • D. Vinay Kumar,

  1. Research Scholar, Department of Mechanical Engineering, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
  2. Associate Professor, Department of Mechanical Engineering, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India

Abstract

The present research investigates the electronic properties of 15-atom Armchair Graphene Nanoribbons (AGNRs) and 15-atom Zig-Zag Carbon Nanotubes (ZCNTs) under applied bias voltages of 100, 200, 300, 400, 500, and 600 millivolts. Using the Non-Equilibrium Green’s Function (NEGF) technique, the study analyzes various electrical features, including current-voltage (I-V) characteristics, to understand the behavior of these nanostructures. The findings reveal that AGNRs exhibit a larger bandgap than ZCNTs, which have a zero-bandgap configuration, enabling improved control over electrical current flow. AGNRs demonstrate linear I-V behavior at 100 mV and 200 mV, while higher bias voltages (300 mV–600 mV) result in constant current flow. Conversely, ZCNTs display linear I-V behavior at lower voltages (100 mV–200 mV), with peak current flow observed around 300 mV. Beyond this, ZCNTs show decreasing current flow at higher voltages due to strong electron-electron interactions and quantum confinement effects.

Furthermore, embedding these nanostructures into polymer composites provides opportunities to harness their unique electronic properties for applications in flexible electronics, electromagnetic shielding, and energy storage. The study enhances our understanding of AGNRs and ZCNTs, offering promising insights for their integration into nanoelectronics devices.

Keywords: Nanostructures, NEGF, ZCNT, AGNR, I-V Characteristics, Polymer Nanocomposites, Flexible Electronics, Quantum Confinement.

How to cite this article:
Anabathula Udaya Sri, D. Vinay Kumar. Current-Voltage Characteristics of 15-Atom AGNRs and ZCNTs at Various Bias Voltages: Insights for Polymer Nanocomposite Applications. Journal of Polymer and Composites. 2025; ():-.
How to cite this URL:
Anabathula Udaya Sri, D. Vinay Kumar. Current-Voltage Characteristics of 15-Atom AGNRs and ZCNTs at Various Bias Voltages: Insights for Polymer Nanocomposite Applications. Journal of Polymer and Composites. 2025; ():-. Available from: https://journals.stmjournals.com/jopc/article=2025/view=196563


References

  1. Kadonoff, L., & Byam, G. (1989). Quantum Statistical Mechanics: Green’s Function Method in Equilibrium and Nonequilibrium Problems.
  2. Meir, Y., & Wingreen, N. S. (1992). Landauer formula for the current through an interacting electron region. Physical review letters, 68(16), 2512.
  3. Ferry, D., & Goodnick, S. M. (1999). Transport in nanostructures(No. 6). Cambridge university press.
  4. Szałowski, K. (2015). Graphene nanoflakes in external electric and magnetic in-plane fields. Journal of Magnetism and Magnetic Materials, 382, 318-327.
  5. Szałowski, K. (2015). Graphene nanoflakes in external electric and magnetic in-plane fields. Journal of Magnetism and Magnetic Materials, 382, 318-327.
  6. Sadeghi, M. M., Pettes, M. T., & Shi, L. (2012). Thermal transport in graphene. Solid State Communications, 152(15), 1321-1330.
  7. Yin, Y., Zhang, Z., Zhong, H., Shao, C., Wan, X., Zhang, C., … & Guo, Y. (2021). Tellurium nanowire gate-all-around MOSFETs for sub-5 nm applications. ACS Applied Materials & Interfaces, 13(2), 3387-3396.
  8. Zhou, M., Jin, H., & Xing, Y. (2020). In-plane dual-gated spin-valve device based on the zigzag graphene nanoribbon. Physical Review Applied, 13(4), 044006.
  9. Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Energy gaps in graphene nanoribbons. Physical review letters, 97(21), 216803.
  10. Wakabayashi, K., Takane, Y., Yamamoto, M., & Sigrist, M. (2009). Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel. Carbon, 47(1), 124-137.
  11. Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. science, 319(5867), 1229-1232.
  12. Yang, S., Li, D., Zhang, T., Tao, Z., & Chen, J. (2012). First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries. The Journal of Physical Chemistry C, 116(1), 1307-1312.
  13. M. Sze, Electrons and Holes in Semiconductors. New York: Wiley, 1969.
  14. Wu, Q., Shen, L., Yang, M., Cai, Y., Huang, Z., & Feng, Y. P. (2015). Electronic and transport properties of phosphorene nanoribbons. Physical Review B, 92(3), 035436.
  15. Wakabayashi, K., Takane, Y., Yamamoto, M., & Sigrist, M. (2009). Electronic transport properties of graphene nanoribbons. New Journal of Physics, 11(9), 095016.
  16. Li, D., Wu, D., Zhang, X., Zeng, B., Li, M., Duan, H., … & Long, M. (2018). The spin-dependent electronic transport properties of M (dcdmp) 2 (M= Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes. Physics Letters A, 382(21), 1401-1408.
  17. Zhang, P., Li, X., Dong, J., Zhu, M., Zheng, F., & Zhang, J. (2022). π-magnetism and spin-dependent transport in boron pair doped armchair graphene nanoribbons. Applied Physics Letters, 120(13).
  18. Liu, L., Gao, J., Guo, X., & Zhao, J. (2013). Electromechanical properties of zigzag-shaped carbon nanotubes. Physical Chemistry Chemical Physics, 15(40), 17134-17141.
  19. Suzuki, S. (Ed.). (2013). Syntheses and applications of carbon nanotubes and their composites. BoD–Books on Demand.
  20. Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  21. Li, S., Zhang, X., Zhang, L., & Gao, M. (2010). Twinning-induced kinking of Sb-doped ZnO nanowires. Nanotechnology, 21(43), 435602.
  22. Gao, R., Wang, Z. L., & Fan, S. (2000). Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. The Journal of Physical Chemistry B, 104(6), 1227-1234.
  23. Xu, Z., & Buehler, M. J. (2009). Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology, 20(18), 185701.
  24. Tian, B., Xie, P., Kempa, T. J., Bell, D. C., & Lieber, C. M. (2009). Single-crystalline kinked semiconductor nanowire superstructures. Nature nanotechnology, 4(12), 824-829

Ahead of Print Subscription Original Research
Volume
Received 10/12/2024
Accepted 13/01/2025
Published 22/01/2025


Loading citations…