Fabrication of Low-Cost and High-Efficiency Crystalline Silicon Solar Cells Using Polymeric Carrier Selective Contacts

Year : 2024 | Volume : | : | Page : –
By
vector

bhoora ram,

vector

Shrikant Verma,

  1. Research Scholar, Department of Physics, Poornima University, Jaipur, Rajasthan, India
  2. Associate Professor, Department of Physics, Poornima University Jaipur, Rajasthan, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_106780’);});Edit Abstract & Keyword

Crystalline silicon (c-Si) solar cells are the leading choice in the photovoltaic market due to their dependability and long-term stability, but lowering production costs and increasing efficiency remain key issues. Organic semiconductors use carrier-selective contacts based on doped amorphous silicon layers and transition metal oxides to simplify and lower the production costs of efficient crystalline silicon solar cells. Polymers are rapidly being used in photovoltaics as flexible substrates, photoanode films, and platinum-free counter electrodes, providing potential alternatives for increased efficiency and cost savings. The study looks into the use of organically conjugated molecules with silicon (Si) heterojunctions for effective photovoltaic. Polymers such as N2200, PCBM, Spiro-OMeTAD, PTAA, PEDOT:PSS, P3HT, and polymers with naphthalene diimide and perylenediimide cores were employed to create an asymmetrical silicon heterocontact with approximately 21% efficiency. The organic/Si electronic coupling interaction contributes to the production of high-quality silicon heterocontact for solar cells and other optoelectronic devices at low temperatures, solution processing, and lithography-free procedures.The paper looks at the design, manufacturing, and performance of c-Si solar cells with polymeric electron and hole selective contacts, as well as their material properties, fabrication processes, device architecture, and future research prospects.

Keywords: Electron-Selective Polymers, Hole-Selective Polymers, Heterocontact, crystalline silicon solar cells, efficiency.

How to cite this article:
bhoora ram, Shrikant Verma. Fabrication of Low-Cost and High-Efficiency Crystalline Silicon Solar Cells Using Polymeric Carrier Selective Contacts. Journal of Polymer and Composites. 2024; ():-.
How to cite this URL:
bhoora ram, Shrikant Verma. Fabrication of Low-Cost and High-Efficiency Crystalline Silicon Solar Cells Using Polymeric Carrier Selective Contacts. Journal of Polymer and Composites. 2024; ():-. Available from: https://journals.stmjournals.com/jopc/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_106780’);});Edit

  1. Hou W, Xiao Y, Han G, Lin JY. The applications of polymers in solar cells: A review. Polymers. 2019 Jan 15;11(1):143.https://doi.org/10.3390/polym11010143
  2. Jäckle S, Liebhaber M, Gersmann C, Mews M, Jäger K, Christiansen S, Lips K. Potential of PEDOT: PSS as a hole selective front contact for silicon heterojunction solar cells. Scientific reports. 2017 May 19;7(1):2170. DOI:10.1038/s41598-017-01946-3
  3. Roy S, Datta S. Applications of polymers in perovskite solar cells: a review. Ann. Chem. Sci. Res. 2020 Apr 23;2:1-4.. DOI: 10.31031/ACSR.2020.02.000531
  4. Kim, J.Y.; Park, S.; Lee, S.; Ahn, H.; Joe, S.Y.; Kim, B.J.; Son, H.J. Low-Temperature Processable High-Performance D–A-Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices. Adv. Energy Mater. 2018, 8, 1801601.
  5. Gong, S.C.; Jang, S.K.; Ryu, S.O.; Jeon, H.; Park, H.H.; Chang, H.J. Post annealing effect of flexible polymer solar cells to improve their electrical properties. Curr. Appl. Phys. 2010, 10, e192–e196.
  6. Baiju, K.G.; Murali, B.; Subba Rao, R.; Jayanarayanan, K.; Kumaresan, D. Heat sink assisted elevated temperature sintering process of TiO2 on polymer substrates for producing high performance flexible dye-sensitized solar cells. Chem. Eng. Process. 2020, 149, 107817.
  7. Sakthivel, P.; Ban, T.W.; Kim, S.; Kim, S.; Gal, Y.S.; Chae, E.A.; Shin, W.S.; Moon, S.J.; Lee, J.C.; Jin, S.H. Synthesis and studies of methyl ester substituted thieno-o-quinodimethane fullerene multiadducts for polymer solar cells. Sol. Energy Mater. Sol. Cells 2013, 113, 13–19.
  8. Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; et al. Aggregation-Induced Multilength Scaled Morphology Enabling 11.76% Efficiency in All-Polymer Solar Cells Using Printing Fabrication. Adv. Mater. 2019, 31, e1902899.
  9. Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved Performance of All-Polymer Solar Cells Enabled by Naphthodiperylenetetraimide-Based Polymer Acceptor. Adv. Mater. 2017, 29, 1700309.
  10. Kolhe, N.B.; Tran, D.K.; Lee, H.; Kuzuhara, D.; Yoshimoto, N.; Koganezawa, T.; Jenekhe, S.A. New Random Copolymer Acceptors Enable Additive-Free Processing of 10.1% Efficient All-Polymer Solar Cells with Near-Unity Internal Quantum Efficiency. ACS Energy Lett. 2019, 4, 1162–1170.
  11. Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S. Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Lett. 2019, 19, 3313–3320.
  12. Blom, P.W.M.; Mihailetchi, V.D.; Koster, L.J.A.; Markov, D.E. Device physics of polymer:Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.
  13. Qi, F.; Deng, X.; Wu, X.; Huo, L.; Xiao, Y.; Lu, X.; Zhu, Z.; Jen, A.K.Y. A Dopant-Free Polymeric Hole-Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1902600.
  14. Yao, Z.; Zhang, F.; Guo, Y.; Wu, H.; He, L.; Liu, Z.; Cai, B.; Guo, Y.; Brett, C.J.; Li, Y.; et al. Conformational and Compositional Tuning of Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymers Boosting the Performance of Perovskite Solar Cells. J. Am. Chem. Soc. 2020, 142, 17681–17692.
  15. Tian, L.; Hu, Z.; Liu, X.; Liu, Z.; Guo, P.; Xu, B.; Xue, Q.; Yip, H.L.; Huang, F.; Cao, Y. Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability. ACS Appl. Mater. Interfaces 2019, 11, 5289–5297.
  16. Ji W, Allen T, Yang X, Zeng G, De Wolf S, Javey A. Polymeric electron-selective contact for crystalline silicon solar cells with an efficiency exceeding 19%. ACS Energy Letters. 2020 Feb 19;5(3):897-902. https://dx.doi.org/10.1021/acsenergylett.0c00110
  17. Colodrero S. Conjugated polymers as functional hole selective layers in efficient metal halide perovskite solar cells. AIMS Materials Science. 2017 Aug 29;4(4):956-69. DOI: 10.3934/matersci.2017.4.956
  18. Yaghoobi Nia N, Mendez M, di Carlo A, Palomares E. Energetic disorder in perovskite/polymer solar cells and its relationship with the interfacial carrier losses. Philosophical Transactions of the Royal Society A. 2019 Aug 26;377(2152):20180315.
  19. Han Y, Liu Y, Yuan J, Dong H, Li Y, Ma W, Lee ST, Sun B. Naphthalene diimide-based n-type polymers: efficient rear interlayers for high-performance silicon–organic heterojunction solar cells. ACS nano. 2017 Jul 25;11(7):7215-22.
  20. Kuo LJ, Li LY, Chang YC, Lin TK, Chang HC, Shieh YC, Chen SW, Shieh JM, Chen LY, Yu P, Chao YC. Stable and efficient hole selective contacts for silicon photovoltaics via solution-processed luminescent small molecules. Journal of Electronic Materials. 2023 Apr;52(4):2708-17.https://doi.org/10.1007/s11664-023-10233-z
  21. Jäckle S, Liebhaber M, Gersmann C, Mews M, Jäger K, Christiansen S, Lips K. Potential of PEDOT: PSS as a hole selective front contact for silicon heterojunction solar cells. Scientific reports. 2017 May 19;7(1):2170.DOI:10.1038/s41598-017-01946-3
  22. Ros E, Tom T, Rovira D, Lopez J, Masmitjà G, Pusay B, Almache E, Martin I, Jimenez M, Saucedo E, Tormos E. Expanding the perspective of polymeric selective contacts in photovoltaic devices using branched polyethylenimine. ACS Applied Energy Materials. 2022 Sep 5;5(9):10702-9.https://doi.org/10.1021/acsaem.2c01422
  23. Wan, L.; Zhang, C.; Ge, K.; Yang, X.; Li, F.; Yan, W.; Xu, Z.; Yang, L.; Xu, Y.; Song, D.; Chen, J. Conductive Hole-Selective Passivating Contacts for Crystalline Silicon Solar Cells. Adv. Energy Mater. 2020, 10, No. 1903851.
  24.  Allen, T. G.; Bullock, J.; Yang, X.; Javey, A.; De Wolf, S. Passivating Contacts for Crystalline Silicon Solar Cells. Nat. Energy 2019, 4, 914−928.
  25.  Gao, P.; Yang, Z.; He, J.; Yu, J.; Liu, P.; Zhu, J.; Ge, Z.; Ye, J. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives. Adv. Sci. 2018, 5, No. 1700547.
  26.  Zhang, T.; Iqbal, S.; Zhang, X. Y.; Wu, W.; Su, D.; Zhou, H. L. Recent Advances in Highly Efficient Organic-Silicon Hybrid Solar Cells. Sol. Energy Mater. Sol. Cells 2020, 204, No. 110245.
  27.  Gerling, L. G.; Mahato, S.; Morales-Vilches, A.; Masmitja, G.; Ortega, P.; Voz, C.; Alcubilla, R.; Puigdollers, J. Transition Metal Oxides as Hole-Selective Contacts in Silicon Heterojunctions Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 145, 109−115
  28.  Bullock, J.; Zheng, P.; Jeangros, Q.; Tosun, M.; Hettick, M.; Sutter-Fella, C. M.; Wan, Y.; Allen, T.; Yan, D.; Macdonald, D.; De Wolf, S.; Hessler-Wyser, A.; Cuevas, A.; Javey, A. Lithium Fluoride Based Electron Contacts for High Efficiency N-Type Crystalline Silicon Solar Cells. Adv. Energy Mater. 2016, 6, No. 1600241.
  29.  Wang, D.; Sheng, J.; Wu, S.; Zhu, J.; Chen, S.; Gao, P.; Ye, J. Tuning Back Contact Property via Artificial Interface Dipoles in Si/ Organic Hybrid Solar Cells. Appl. Phys. Lett. 2016, 109, No. 043901.
  30.  Liu, J.; Ji, Y.; Liu, Y.; Xia, Z.; Han, Y.; Li, Y.; Sun, B. DopingFree Asymmetrical Silicon Heterocontact Achieved by Integrating Conjugated Molecules for High Efficient Solar Cell. Adv. Energy Mater. 2017, 7, No. 1700311.
  31.  (11) Battaglia, C.; Cuevas, A.; De Wolf, S. High-Efficiency Crystalline Silicon Solar Cells: Status and Perspectives. Energy Environ. Sci. 2016, 9, 1552−1576.
  32. (12) Adachi, D.; Hernández, J. L.; Yamamoto, K. Impact of Carrier Recombination on Fill Factor for Large Area Heterojunction Crystalline Silicon Solar Cell with 25.1% Efficiency. Appl. Phys. Lett. 2015, 107, 22−25.
  33. (23) Li, L. Y.; Chen, C. H.; Chiu, C. L.; Li, Y. L.; Meng, H. F.; Yu, P. Diffusion-Free Organic Hole Selective Contacts for Silicon Solar Cells. Conf. Rec. IEEE Photovoltaic Spec. Conf. 2019, 2299−2302. (24) Liu, P. H.; Chuang, C. H.; Zhou, Y. L.; Wang, S. H.; Jeng, R. J.; Rwei, S. P.; Liau, W. B.; Wang, L. Conjugated Polyelectrolytes as Promising Hole Transport Materials for Inverted Perovskite Solar Cells: Effect of Ionic Groups. J. Mater. Chem. A 2020, 8, 25173− 25177
  34. (33) Masmitja,̀ G.; Gerling, L. G.; Ortega, P.; Puigdollers, J.; Martín, I.; Voz, C.; Alcubilla, R. V2O: X-Based Hole-Selective Contacts for cSi Interdigitated Back-Contacted Solar Cells. J. Mater. Chem. A 2017, 5, 9182−9189
  35. Messmer, C., Bivour, M., Schön, J. and Hermle, M., 2018. Requirements for efficient hole extraction in transition metal oxide-based silicon heterojunction solar cells. Journal of Applied Physics, 124(8). https://doi.org/10.1063/1.5045250
  36. Melskens, J., van de Loo, B.W., Macco, B., Black, L.E., Smit, S. and Kessels, W.M.M., 2018. Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. IEEE Journal of Photovoltaics, 8(2), pp.373-388. DOI: 10.1109/JPHOTOV.2018.2797106
  37. Mehmood, H., Nasser, H., Özkol, E., Tauqeer, T., Hussain, S. and Turan, R., 2017, August. Physical device simulation of partial dopant-free asymmetric silicon heterostructure solar cell (P-DASH) based on holeselective molybdenum oxide (MoOx) with crystalline silicon (cSi). In 2017 International Conference on Engineering and Technology (ICET) (pp. 1-6). IEEE.
  38. Mehmood, H., Nasser, H., Tauqeer, T., Hussain, S., Ozkol, E. and Turan, R., 2018. Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier‐selective contact. International Journal of Energy Research, 42(4), pp.1563-1579.
  39. Mehmood, H., Nasser, H., Tauqeer, T. and Turan, R., 2020. Numerical analysis of dopant‐free asymmetric silicon heterostructure solar cell with SiO2 as passivation layer. International Journal of Energy Research, 44(13), pp.10739-10753. https://doi.org/10.1002/er.5720
  40. Menchini, F., Serenelli, L., Martini, L., Izzi, M., Stracci, G., Mangiapane, P., Salza, E. and Tucci, M., 2018. Transparent hole-collecting and buffer layers for heterojunction solar cells based on n-type-doped silicon. Applied Physics A, 124, pp.1-13.
  41.  Nagamatsu, K. A.; Avasthi, S.; Sahasrabudhe, G.; Man, G.; Jhaveri, J.; Berg, A. H.; Schwartz, J.; Kahn, A.; Wagner, S.; Sturm, J. C. Titanium Dioxide/Silicon HoleBlocking Selective Contact to Enable Double-Heterojunction Crystalline SiliconBased Solar Cell. Appl. Phys. Lett. 2015, 106, 123906.
  42. Nayak, M., Mandal, S., Pandey, A., Mudgal, S., Singh, S. and Komarala, V.K., 2019. Nickel oxide hole‐selective heterocontact for silicon solar cells: role of SiOx interlayer on device performance. Solar RRL, 3(11), p.1900261. Patwardhan, S., Maurya, S., Kumar, A. and Kavaipatti, B., amorphous silicon-free metaloxides based carrier-selective contacts to crystalline silicon solar cells , 2021.
  43.  Lou X, Wang X, Xu D, Gao K, Wang S, Xing C, Li K, Li W, Li D, Xu G, Yang X. Polymeric Hole‐Selective Contact for Crystalline Silicon Solar Cells. Solar RRL. 2023 Dec;7(24):2300796.

Ahead of Print Subscription Original Research
Volume
Received 05/08/2024
Accepted 14/08/2024
Published 17/09/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}