Aquatic Ecosystems: A Review on Prospecting of Anticancer Molecules from Fungi & Other Microbes

Year : 2024 | Volume : | : | Page : –
By

Mukesh Chander,

Jasmeet Kaur,

  1. Assistant Professor, Department of Biotechnology, Khalsa College (Autonomous) Amritsar, Punjab, India
  2. PG Student, Department of Biotechnology, Khalsa College (Autonomous) Amritsar, Punjab, India

Abstract

Marine biota namely actinomycetes, bacteria, fungi, microalgae, green algae, oceanic weeds, mangroves, and other extremophiles constitute about 90% of the oceanic biomass. The organisms are diverse taxonomically, biological productive/active, and bio-chemically unique. These unique biochemiques may act as a great source fore for the discovery of new bioactive molecules including anticancer drugs. The marines produce medicinally potent bio-chemicals namely sulphated saccharides, polyphenols and, sterols. Only a few of these alkaloids have been studied for their pharmacological properties namely antitumour, immunostimulatory, and antioxidative activities. The phytochemicals may probably interact with macrophages, initiating cell death, and prevent mutational damage to DNA, reducing event of carcinogenesis. Peptides are bioactive products which are inherent to many marine species. These marine peptides are of immense nutraceutical and medicinal importance as they have broad range of bioactivities including microbicidal, antiviral, antimelanoma, antioxidative, cardioprotective, immunomodulatory, analgesic, anti-anxiety, anti-diabetic, appetite suppressing and neuroprotective activities which have attracted the attention of the pharmaceutical industry, which attempts to modify them for treatment, cure and prevention of various diseases. Some of these peptides and their derivatives are highly valuable commercially and developed as pharmaceutical and nutraceuticals commercially. The marine habitat, little explored, may act as a potential source of novel bioactive compounds acting as prospective and potent biopharmaceuticals. The biological and the artificially synthesized/modified form of these chemicals may prove as novel therapeutic agents. The recent progress in technology and deep sea exploration missions have made the drug discovery from oceanic sources a reality, resulting in screening, isolation and modification of drugs capable of curing cancer, Parkinson, Alzheimer and various other uncurable disorders and diseases. The available technology and use of modern gadgets have brought the depths of ocean within human approach and now marine resource like sponges, corals, etc. can be studied for their potential utilization in biopharmaceutical industry. In future various types of bioactive compounds discovered for treating the diseases and these marine bioactive compounds are very beneficial and have no side effects.

Keywords: Antioxidant, Antitumor, Bioactive molecules, Biopharmaceuticals, Microbes

How to cite this article: Mukesh Chander, Jasmeet Kaur. Aquatic Ecosystems: A Review on Prospecting of Anticancer Molecules from Fungi & Other Microbes. International Journal of Fungi. 2024; ():-.
How to cite this URL: Mukesh Chander, Jasmeet Kaur. Aquatic Ecosystems: A Review on Prospecting of Anticancer Molecules from Fungi & Other Microbes. International Journal of Fungi. 2024; ():-. Available from: https://journals.stmjournals.com/ijf/article=2024/view=172169



Fetching IP address…

References

  1. Shwab, E. K., Bok, J. W., Tribus, M., Galehr, J., Graessle, S., & Keller, N. P. (2007). Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic cell, 6(9), 1656-1664.
  2. Gerwick, W. H., & Fenner, A. M. (2013). Drug discovery from marine microbes. Microbial ecology, 65(4), 800-806.
  3. Xiong, Z. Q., Zhang, Z. P., Li, J. H., Wei, S. J., & Tu, G. Q. (2012). Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Applied Environmental Microbiology, 78(2), 589-592.
  4. Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites,2(2), 303-336.
  5. Sagar, S., Kaur, M., & Minneman, K. P. (2010). Antiviral lead compounds from marine sponges. Marine Drugs, 8(10), 2619-2638.
  6. Edwards, D. J., Marquez, B. L., Nogle, L. M., McPhail, K., Goeger, D. E., Roberts, M. A., & Gerwick, W. H. (2004). Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chemistry & Biology,11(6), 817-833.
  7. Gross, H. (2010). Genomic mining–a concept for the discovery of new bioactive natural products. Planta Medica, 76(12), L_9.
  8. Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981− 2002. Journal of Natural Products, 66(7), 1022-1037.
  9.   Radjasa, O. K., Vaske, Y. M., Navarro, G., Vervoort, H. C., Tenney, K., Linington, R. G., & Crews, P. (2011). Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorganic & Medicinal Chemistry, 19(22), 6658-6674.
  10. Gerwick, W. H., & Moore, B. S. (2012). Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry & Biology, 19(1), 85-98.
  11. Mayer, A., Rodríguez, A., Taglialatela-Scafati, O., & Fusetani, N. (2013). Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 11(7), 2510-2573.
  12. Díaz, M., Ferreras, E., Moreno, R., Yepes, A., Berenguer, J., & Santamaría, R. (2008). High-level overproduction of Thermus enzymes in Streptomyces lividans. Applied Microbiology and Biotechnology, 79(6), 1001-1008.
  13. 13        Xiong, H., Qi, S., Xu, Y., Miao, L., & Qian, P. Y. (2009). Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. Journal of Hydro-environment Research, 2(4), 264-270.
  14. Dash, S., Jin, C., Lee, O. O., Xu, Y., & Qian, P. Y. (2009). Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. Journal of Industrial Microbiology & Biotechnology, 36(8), 1047-1056.
  15. Plaza, M., Amigo-Benavent, M., Del Castillo, M. D., Ibáñez, E., & Herrero, M. (2010). Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International, 43(10), 2341-2348.
  16. Blunt, J. W., Copp, B. R., Hu, W. P., Munro, M. H., Northcote, P. T., & Prinsep, M. R. (2007). Marine natural products. Natural Product Reports, 24(1), 31-86.
  17. Molinski, T. F., Dalisay, D. S., Lievens, S. L., & Saludes, J. P. (2009). Drug development from marine natural products. Nature Reviews Drug discovery, 8(1), 69-85.
  18. Chander, M. (2019). Microbial Production of Biodegradable Plastics from Agricultural Waste. International Journal of Research and Analytical Reviews (IJRAR), 6(2): 552-568.E-ISSN2348-1269, P-ISSN2349-5138.
  19. Johnson, J. A., Citarasu, T., & Manjusha, W. A. (2012). Antimicrobial screening and identification of bioactive compounds present in marine sponge Zygomycale sp. collected from Kanyakumari coast. Journal of Chemical, Biological and Physical Sciences , 2(4), 1842-1848.
  20. Macherla, V. R., Liu, J., Sunga, M., White, D. J., Grodberg, J., Teisan, S., & Potts, B. C. (2007). Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. The Journal of Natural Products, 70(9), 1454-1457.
  21. Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., & Andersen, R. J. (2007). Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. Journal of Natural Products,70(12), 1850-1853.
  22. McArthur, K. A., Mitchell, S. S., Tsueng, G., Rheingold, A., White, D. J., Grodberg, J., & Potts, B. C. (2008). Lynamicins A− E, chlorinated bisindole pyrrole antibiotics from a novel marine Actinomycete. Journal of Natural Products, 71(10), 1732-1737.
  23. Abdel-Wahab, M. A., Asolkar, R. N., Inderbitzin, P., & Fenical, W. (2007). Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016.Phytochemistry, 68(8), 1212-1218.
  24. Chander, M. Kaur, I. 2015. An Industrial Dye Decolourisation by Phlebia sp. International Journal of Current Microbiology and Applied Sciences. 4(05). ISSN: 2319-7706
  25. Kralj, A., Kehraus, S., Krick, A., van Echten-Deckert, G., & König, G. M. (2007). Two new depsipeptides from the marine fungus Spicellum roseum. Planta Medica, 73(4), 366-371.
  26. Prachyawarakorn, V., Mahidol, C., Sureram, S., Sangpetsiripan, S., Wiyakrutta, S., Ruchirawat, S., & Kittakoop, P. (2008). Diketopiperazines and phthalides from a marine derived fungus of the order Pleosporales. Planta Medica, 74(1), 69-72.
  27. Zhang, M., Wang, W. L., Fang, Y. C., Zhu, T. J., Gu, Q. Q., & Zhu, W. M. (2008). Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. Journal of Natural Products, 71(6), 985-989.
  28. Sun, X., Zhou, X., Cai, M., Tao, K., & Zhang, Y. (2009). Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresource Technology, 100(18), 4244-4251.
  29. Xu, J., Kjer, J., Sendker, J., Wray, V., Guan, H., Edrada, R., & Proksch, P. (2009). Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorganic & Medicinal Chemistry, 17(20), 7362-7367.
  30. Fremlin, L. J., Piggott, A. M., Lacey, E., & Capon, R. J. (2009). Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolovr.Journal of Natural Products, 72(4), 666-670.
  31. Lu, Z., Wang, Y., Miao, C., Liu, P., Hong, K., & Zhu, W. (2009). Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus 094102. Journal of Natural Products, 72(10), 1761-1767.
  32. Rios, A. D. O., Antunes, L. M., & de LP Bianchi, M. (2009). Bixin and lycopene modulation of free radical generation induced by cisplatin–DNA interaction. Food Chemistry, 113(4), 1113-1118.
  33. Sithranga Boopathy, N., & Kathiresan, K. (2010). Anticancer drugs from marine flora: an overview. Journal of Oncology, 75(3 ), 140174-140179.
  34. Kathiresan, K., & Thiruneelakandan, G. (2008). Prospects of lactic acid bacteria of marine origin,Indian Journal of Biotechnology, 7(2), 170-177.
  35. Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451-455.
  36. Singh, S., Kapoor, S., Chander, M., & Gill, P. K. (2022). Recent Update on Serum Alkaline and Acid Phosphatases in Pre- and Postoperative Breast Cancer Patients. Sudan Journal of Medical Sciences, 17, 1. doi: 10.18502/sjms.v17i1.10686.
  37. Devine, D. A., & Marsh, P. D. (2009). Prospects for the development of probiotics and prebiotics for oral applications. Journal of Oral Microbiology, 1(1), 1949-1951.
  38. Tanaka, T., Tanaka, M., & Tanaka, T. (2011). Oral carcinogenesis and oral cancer chemoprevention: a review. Pathology Research International, 56(21), 4904-4909.
  39. Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z., & Xu, Z. (2005). In vivo growth- inhibition of S180 tumor by mixture       of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus. Pharmacological Research, 51(2), 153-157.
  40. Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y., & Kizaki, M. (2005). Fucoidan induces apoptosis of human HS‐sultan cells accompanied by activation of caspase‐3 and down‐regulation of ERK pathways. American Journal of Hematology, 78(1), 7-14.
  41. Richard, B., Bouton, M. C., Loyau, S., Lavigne, D., Letourneur, D., Jandrot-Perrus, M., & Arocas, V. (2006). Modulation of protease nexin-1 activity by polysaccharides. Thrombosis and Haemostasis, 95(2), 229-235.
  42. Boisson-Vidal, C., Zemani, F., Caligiuri, G., Galy-Fauroux, I., Colliec-Jouault, S., Helley, D., & Fischer, A. M. (2007). Neoangiogenesis induced by progenitor endothelial cells: effect of fucoidan from marine algae. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents), 5(1), 67-77.
  43. Li, B., Lu, F., Wei, X., & Zhao, R. (2008). Fucoidan: structure and bioactivity. Molecules, 13(8), 1671-1695.
  44. Kingston, D. G., & Newman, D. J. (2007). Taxoids: cancer-fighting compounds from nature. Current Opinion in Drug Discovery & Development, 10(2), 130-144.
  45. Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100(12), 72-79.
  46. Gross, H., Goeger, D. E., Hills, P., Mooberry, S. L., Ballantine, D. L., Murray, T. F., & Gerwick, W. H. (2006). Lophocladines, bioactive alkaloids from the red alga Lophocladia sp.Journal of Natural Products, 69(4), 640-644.
  47. Gupta, A. P., Pandotra, P., Sharma, R., Kushwaha, M., & Gupta, S. (2013). Marine resource: A promising future for anticancer drugs. In Studies in Natural Products Chemistry, 40(4), 229-325.
  48. Kim, M. H., & Joo, H. G. (2008). Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunology Letters, 115(2), 138-143.
  49. Marmot, M., Atinmo, T., Byers, T., Chen, J., Hirohata, T., Jackson, A., & Mann, J. (2007). Food, nutrition, physical activity, and the prevention of cancer: a global perspective,11(1), 9-23.
  50. Sithranga Boopathy, N., & Kathiresan, K. (2010). Anticancer drugs from marine flora: an overview. Journal of Oncology,2010.
  51. Gerwick, W. H., & Moore, B. S. (2012). Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry & Biology, 19(1), 85-98.
  52. Cuevas, C., & Francesch, A. (2009). Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Natural Product Reports, 26(3), 322-337.
  53. Jordan, M. A., Kamath, K., Manna, T., Okouneva, T., Miller, H. P., Davis, C., & Wilson, L. (2005). The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Molecular Cancer Therapeutics, 4(7), 1086-1095.
  54. Storz, U. (2015). Antibody-drug conjugates: Intellectual property considerations. In Monoclonal Antibodies, 7 ( 6) 989-1009.
  55. Abreu, P. A., Sousa, T. S., Jimenez, P. C., Wilke, D. V., Rocha, D. D., Freitas, H. P., & Costa‐Lotufo, L. V. (2014). Identification of pyrroloformamide as a cytokinesis modulator. Chemical BioChemistry , 15(4), 501-506.
  56. Guimarães, L., Jimenez, P., Sousa, T., Freitas, H., Rocha, D., Wilke, D., & Costa-Lotufo, L. (2014). Chromomycin A2 induces autophagy in melanoma cells. Marine Drugs, 12(12), 5839-5855.
  57. Muigg, P., Rosén, J., Bohlin, L., & Backlund, A. (2013). In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochemistry Reviews, 12(3), 449-457.
  58. Suarez-Jimenez, G. M., Burgos-Hernandez, A., & Ezquerra-Brauer, J. M. (2012). Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Marine Drugs, 10(5), 963-986.
  59. Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F., & Stanton, C. (2011). Bioactive peptides from muscle sources: meat and fish. Nutrients, 3(9), 765-791.
  60. Olivera, B. M. (2006). Conus peptides: biodiversity-based discovery and exogenomics. Journal of Biological Chemistry,281(42), 31173-31177.
  61. Da Costa, J. P., Cova, M., Ferreira, R., & Vitorino, R. (2015). Antimicrobial peptides: an alternative for innovative medicines? Applied Microbiology and Biotechnology, 99(5), 2023-2040.
  62. Zhang, M., Li, M. F., & Sun, L. (2014). NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection, 9(9), 106 -543.
  63. Narayana, J. L., Huang, H. N., Wu, C. J., & Chen, J. Y. (2015). Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget, 6(15), 12936.
  64. Himaya, S. W. A., Dewapriya, P., & Kim, S. K. (2013). EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells. Toxicology and Applied Pharmacology, 269(3), 205-214.
  65. Hu, X., Song, L., Huang, L., Zheng, Q., & Yu, R. (2012). Antitumor effect of a polypeptide fraction from Arca subcrenata in vitro and in vivo.Marine Drugs, 10(12), 2782-2794.
  66. Zhan, K. X., Jiao, W. H., Yang, F., Li, J., Wang, S. P., Li, Y. S., & Lin, H. W. (2014). Reniochalistatins A–E, cyclic peptides from the marine sponge Reniochalina stalagmitis. Journal of Natural Products, 77(12), 2678-2684.
  67. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177-187.
  68. Ko, S. C., Kim, D. G., Han, C. H., Lee, Y. J., Lee, J. K., Byun, H. G., & Jeon, Y. J. (2012). Nitric oxide-mediated vasorelaxation effects of anti-angiotensin I-converting enzyme (ACE) peptide from Styela clava flesh tissue and its anti-hypertensive effect in spontaneously hypertensive rats. Food Chemistry, 134(2), 1141-1145.
  69. Leoncini, E., Nedovic, D., Panic, N., Pastorino, R., Edefonti, V., & Boccia, S. (2015). Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiology and Prevention Biomarkers, 24(7), 1003-1011.
  70. Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 59-63.
  71. Rajapakse, N., Jung, W. K., Mendis, E., Moon, S. H., & Kim, S. K. (2005). A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences, 76(22), 2607-2619.
  72. Hosomi, R., Fukunaga, K., Arai, H., Kanda, S., Nishiyama, T., & Yoshida, M. (2011). Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption. Journal of Food Science, 76(4), 116-121.
  73. Duarte, J., Vinderola, G., Ritz, B., Perdigón, G., & Matar, C. (2006). Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology, 211(5), 341-350.
  74. Yang, R., Zhang, Z., Pei, X., Han, X., Wang, J., Wang, L., & Li, Y. (2009). Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chemistry, 113(2), 464-470.
  75. De Lisa, E., Carella, F., De Vico, G., & Di Cosmo, A. (2013). The gonadotropin releasing hormone (GNRH)-like molecule in prosobranch Patella caerulea: Potential biomarker of endocrine-disrupting compounds in marine environments. Zoological Science, 30(2), 135-141.
  76. Ryu, B., & Kim, S. K. (2013). Potential beneficial effects of marine peptide on human neuron health. Current Protein and Peptide Science, 14(3), 173-176.
  77. Zhu, C. F., Peng, H. B., Liu, G. Q., Zhang, F., & Li, Y. (2010). Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition, 26(10), 1014-1020.
  78. Vetter, I., & J Lewis, R. (2012). Therapeutic potential of cone snail venom peptides (conopeptides). Current Topics in Medicinal Chemistry, 12(14), 1546-1552.
  79. Buford, V. R., Kumar, V., & Kennedy, B. R. (2016). Relationship of various infection control interventions to the prevalence of multidrug-resistant Pseudomonas aeruginosa among US hospitals. American Journal of Infection Control,44(4), 381-386.
  80. Devasahayam, G., Scheld, W. M., & Hoffman, P. S. (2010). Newer antibacterial drugs for a new century. Expert Opinion on Investigational Drugs, 19(2), 215-234.
  81. Radji, M., Agustama, R. A., Elya, B., & Tjampakasari, C. R. (2013). Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and MDR Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 3(8), 663-667.
  82. Skariyachan, S., G. Rao, A., Patil, M. R., Saikia, B., Bharadwaj K, V., & Rao, G, J. (2014). Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India. Letters in Applied Microbiology,58(3), 231-241.
  83. Thakur, D., Yadav, A., Gogoi, B. K., & Bora, T. C. (2007). Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. Journal de Mycologie Médicale,17(4), 242-249.
  84. Şahin, S., & Elhussein, E. A. A. (2018). Valorization of a biomass: phytochemicals in oilseed by-products. Phytochemistry Reviews, 1(12), 213-219.
  85. Hoppers, A., Stoudenmire, J., Wu, S., & Lopanik, N. B. (2015). Antibiotic activity and microbial community of the temperate sponge, Haliclona sp. Journal of Applied Microbiology, 118(2), 419-430.
  86. Chen, Y., Wang, C., Liu, H., Qiu, J., & Bao, X. (2005). Ag/SiO 2: a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chemical Communications, 42(7), 5298-5300.
  87. Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3(2), 203-208.
  88. Lara, H. H., Ayala-Núnez, N. V., Turrent, L. D. C. I., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621.
  89. Leaper, D. J. (2006). Silver dressings: their role in wound management. International Wound Journal, 3(4), 282-294.
  90. Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., & Farahani, F. (2011). Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules, 16(8), 6667-6676.
  91. Raimondi, F., Scherer, G. G., Kötz, R., & Wokaun, A. (2005). Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angewandte Chemie International Edition, 44(15), 2190-2209.
  92. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology,16(10), 234 -653.
  93. Lara, H. H., Ayala-Núnez, N. V., Turrent, L. D. C. I., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621.
  94. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli.Applied Environmental Microbiology, 73(6), 1712-1720.
  95. Stobie, N., Duffy, B., McCormack, D. E., Colreavy, J., Hidalgo, M., McHale, P., & Hinder, S. J. (2008). Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyl-triethoxysilane sol–gel coating. Biomaterials, 29(8), 963-969.
  96. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters,2(1), 32-40.
  97. Theivasanthi, T., & Alagar, M. (2010). X-ray diffraction studies of copper nanopowder. arXiv preprint arXi. 8(2),1003.6068.
  98. Yoon, K. Y., Byeon, J. H., Park, J. H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373(2-3), 572-575.
  99. Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine,3(2), 168-171.
  100. John, R., & Florence, S. (2010). Optical, Structural and Morphological studies of Bean-like ZnS Nanostructures by Aqueous Chemical Method. Chalcogenide Letters, 7(4), 269-273.
  101. Brandon, E. F., Sparidans, R. W., van Ooijen, R. D., Meijerman, I., Lazaro, L. L., Manzanares, I., & Schellens, J. H. (2007). In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Investigational new drugs, 25(1), 9-19.
  102. Sarkar, S., Jana, A. D., Samanta, S. K., & Mostafa, G. (2007). Facile synthesis of silver nano particles with highly efficient anti-microbial property.Polyhedron, 26(15), 4419-4426.
  103. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., & Zbořil, R. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B,110(33), 16248-16253.
  104. Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? Journal of Antimicrobial Chemotherapy, 59(4), 587-590.
  105. Sable, R., Parajuli, P., & Jois, S. (2017). Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Marine Drugs, 15(4), 124-129.
  106. Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs,12(2), 1066-1101.
  107. Lindequist, U. (2016). Marine-derived pharmaceuticals–challenges and opportunities. Biomolecules & Therapeutics,24(6), 561-566.
  108. Jirge, S. S., & Chaudhari, Y. S. (2010). Marine: the ultimate source of bioactives and drug metabolites. International Journal of Research in Ayurveda and Pharmacy, 1(1), 55-62.
  109. Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10-14.
  110. Berquin, I. M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J. M., & Edwards, I. J. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. The Journal of Clinical Investigation, 117(7), 1866-1875.
  111. Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100.
  112. Brandon, E. F., Sparidans, R. W., van Ooijen, R. D., Meijerman, I., Lazaro, L. L., Manzanares, I., & Schellens, J. H. (2007). In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Investigational New Drugs, 25(1), 9-19.

Ahead of Print Subscription Review Article
Volume
Received September 2, 2024
Accepted September 15, 2024
Published September 16, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.