Effect of Functionalization on glass transition temperature of Carbon Fiber reinforced Epoxy Nanocomposites using MD Simulation

Open Access

Year : 2024 | Volume :12 | Special Issue : 05 | Page : 1-8
By

Mohd. Rehan Haider,

Pradeep Kumar Singh,

Kamal Sharma,

  1. Research Scholar Department of Mechanical Engineering, GLA University, Mathura Uttar Pradesh India
  2. Associate Professor Department of Mechanical Engineering, GLA University, Mathura Uttar Pradesh India
  3. Professor Department of Mechanical Engineering, GLA University, Mathura Uttar Pradesh India

Abstract

As we all know that the mechanical characterization of any material plays a vital role in performance of the material throughout its life cycle. One of the major parameters in calculating the mechanical properties of carbon fiber reinforced nanocomposite is glass temperature. Understanding glass transition behaviour of polymer nanocomposites are crucial for optimizing their mechanical properties and performance. We used “Molecular dynamics simulations” to calculate sequel functionalization effect on glass transition behaviour of carbon fiber-reinforced epoxy (LY556) nanocomposites. In this investigation three distinct form of graphene that is pristine graphene, Graphene modified with amine and graphene modified with carboxyl is studied. In this simulation the glass transition temperature (Tg) of pure carbon fiber and epoxy is lower than that of graphene carbon fiber and epoxy composites (GCFEC). The Tg of pristine graphene is higher that of the functionalized graphene and the Tg of graphene functionalized with amine is much higher than that of graphene functionalized with carboxyl group. The results of this simulation are very much close to the experimental results hence this approach can be used to anticipate the glass temperature of epoxy composites. So, from this study it can be concluded that glass transition temperature of carbon fiber reinforced nanocomposites can gives better results on functionalization of graphene.

Keywords: Nanocomposites, simulation, graphene, functionalization, carbon fiber, epoxy

[This article belongs to Special Issue under section in Journal of Polymer and Composites(jopc)]

How to cite this article: Mohd. Rehan Haider, Pradeep Kumar Singh, Kamal Sharma. Effect of Functionalization on glass transition temperature of Carbon Fiber reinforced Epoxy Nanocomposites using MD Simulation. Journal of Polymer and Composites. 2024; 12(05):1-8.
How to cite this URL: Mohd. Rehan Haider, Pradeep Kumar Singh, Kamal Sharma. Effect of Functionalization on glass transition temperature of Carbon Fiber reinforced Epoxy Nanocomposites using MD Simulation. Journal of Polymer and Composites. 2024; 12(05):1-8. Available from: https://journals.stmjournals.com/jopc/article=2024/view=160303

Full Text PDF Download


Browse Figures

References

  1. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
  2. J. Allen, V. C. Tung, and B. K. Richard Honeycomb Carbon-A Review of Graphene. Chem. Rev. 110, 132–145 (2010).
  3. Kurien, R.A., Selvaraj, D.P., Sekar, M. et al. A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose30, 8643–8664 (2023).
  4. Sumesh KR, Ajithram A, Palanisamy, S. et al. Mechanical properties of ramie/flax hybrid natural fiber composites under different conditions. Biomass Conv. Bioref.(2023).
  5. Karuppiah, G.; Kuttalam, K.C.; Ayrilmis, N.; Nagarajan, R.; Devi, M.P.I.; Palanisamy, S.; Santulli, C. Tribological Analysis of Jute/Coir Polyester Composites Filled with Eggshell Powder (ESP) or Nanoclay (NC) Using Grey Rational Method. Fibers, 10, 60 (2022).
  6. Goutham, E.R.S.; Hussain, S.S.; Muthukumar, C.; Krishnasamy, S.; Kumar, T.S.M.; Santulli, C.; Palanisamy, S.; Parameswaranpillai, J.; Jesuarockiam, N. Drilling Parameters and Post-Drilling Residual Tensile Properties of Natural-Fiber-Reinforced Composites: A Review.  Compos. Sci. ,  7, 136 (2023).
  7. Rahman, and A. Haque Molecular modelling of crosslinked graphene-epoxy nanocomposites for Characterization of Elastic Constants and Interfacial Properties. Composites Part B Engineering. 54. 10.1016 (2013).
  8. for characterization of elastic constants and interfacial properties. Composites: Part B. 54, 353–364 (2013).
  9. Nayebi, and E. Zaminpayma A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys letter A 380, 628–633 (2016).
  10. K. Julia, D. R. Klimek, I. Miskioglu, and G. M. Odegard Mechanical Properties of graphene

nanoplatelet/epoxy composites. J. Comp. Mat. 49(6), 659–668 (2015).

  1. Ebrahimi, A. Montazeri, and H. Rafii-Tabar Molecular dynamics study of the interfacial mechanical properties of the graphene-collagen biological nanocomposite. Comp. Mat. Sci. 69, 29–39 (2013).
  2. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, and C. Yan Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene 1, 30–49 (2012).
  3. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert Graphene nanostructures as tunable storage media for molecular hydrogen. 102, 10439–10444 (2005).
  4. Xue, L. V. Cheng, M. Shan, H. Zhang, C. Ling, X. Zhou, and Z. Jiao Glass transition temperature of functionalized graphene-polymer composites. Comp.Mat. Sci. 71, 66–71 (2013).
  5. Li, X. Y. Liu, J. Q. Qin, and Y. Gu Molecular dynamics simulation on glass transition temperature of isomeric polyimide. EXPRESS Pol. Letters. 3, 665–675 (2009).
  6. Jeyranpour, G. H. Alahyarizadeh, and B. Arab Comparative Investigation of Thermal and Mechanical Properties of Cross-Linked Epoxy Polymers with different curing agents by Molecular Dynamics Simulation. J. Mol. Grap. Mod. 62, 157–164 (2015).
  7. Choi, S. Yu, S. Yang, and M. Cho The glass transition and thermoelastic behavior of epoxy based nanocomposites: A molecular dynamics study. Polymer 52, 5197–5203 (2011).
  8. H. Gojny FH Schulte K: Functionalization effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Comp. Sci. Tech. 64, 2303–2308 (2004).
  9. Menard Dynamic Mechanical Analysis: A Practical Introduction, CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431, U.S.A.; 1999.
  10. Sharma, K. S. Kaushalyayan, and M. Shukla Pull-out simulation of interfacial properties of amine functionalized multi-walled carbon nanotube epoxy composites. Comp. Mat. Sci. 99, 232–241 (2015).
  11. Sharma, and M. Shukla Molecular modeling of the mechanical behavior of carbon fiber amine functionalized multiwall carbon nanotube/epoxy composites. New Carb Mat. 29(2), 132–142 (2014).
  12. Cheng Lv, Qingzhong Xue, Dan Xia, Ming Ma, Jie Xie, and Huijuan Chen Effect of Chemisorption on the Interfacial Bonding Characteristics of Graphene−Polymer Composites. Phys. Chem. C 114(14), 6588–6594 (2010).
  13. Jie Xie, Qingzhong Xue, Keyou Yan,Huijuan Chen, Dan Xia, andMingdong Dong Chemical Modification: an Effective Way of Avoiding the Collapse of SWNTs on Al Surface Revealed by Molecular Dynamics Simulations. Phys. Chem. C. 113, 14747–14752 (2009).
  14. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye Study on amino-functionalized multiwalled carbon nanotubes. Mat. Sci. and Engg. A 464, 151–156 (2007).
  15. Materials Studio 5.0 software. In: Accelerys I, UK (ed) Tutorial. 5th ed. San Diego, CA 921212011.
  16. Yang, and Ze-Sheng Li Qian Hu-jun, Yang Yong-biao, Zhang Xiu-bin, Sun Chia-chung, Molecular dynamics simulation studies of binary blend miscibility of poly(3 hydroxybutyrate) and poly(ethylene oxide). Polymer 45, 453–457 (2004).
  17. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamsom, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme, and L. C. Brinson Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–341 (2008).
  18. Jeyranpour, G. Alahyarizadeh, H.Minuchehr The Thermo-Mechanical Properties estimation of Fullerene-Reinforced Resin Epoxy Composites by Molecular Dynamics Simulation- A Comparative Study. Polymer 88, 9–18 (2016).
  19. The effect of cross-linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol. Model 19(9), 3719–3731 (2013).
  20. Szczygielska, A. Burian, S. Duber, J. C. Dore, and V. Honkimaki Radial distribution function analysis of the graphitization process in carbon materials. J. Alloys Compo. 328, 231–236 (2001).
  21. Wu, and W. Xu Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 48, 5802–5812 (2007).
  22. K R, Sumesh & Palanisamy, Sivasubramanian & Khan, Tabrej & Ajithram, A. & Ahmed, Omar, Mechanical, morphological and wear resistance of natural fiber / glass fiber-based polymer composites. BioResources. 19. 3271-3289 (2024).

Special Issue Open Access Original Research
Volume 12
Special Issue 05
Received May 7, 2024
Accepted June 18, 2024
Published August 1, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.