Development of Formulation for Dry Powder Inhalation of Amino Acids Aimed at Smoking Cessation: A Biomedical Perspective

Year : 2024 | Volume :02 | Issue : 02 | Page : 13-29
By

Padma Latha,

Syed Riaz Hussain Chistia,

N. Jyothi Reddy,

Abstract

This study aims to develop an effective and compliant therapy targeting the lungs through the strategic utilization of amino acids, which play a crucial role in modulating mood and behavior during activities like smoking. L-Tryptophan and L-Tyrosine were finely micronized within the 2-4 µm range, with lactose serving as a carrier, to create a dry powder inhalation formulation. The combination of these amino acids is anticipated to elicit a synergistic effect aimed at mitigating withdrawal symptoms associated with smoking cessation treatment. In vivo study findings revealed a rapid onset of action, heightened local drug concentration, and prolonged retention of the drug at the administration site. Consequently, this study’s conclusion emphasizes that the dry powder inhalation formulation represents an efficacious means of delivering drugs to the lungs compared to alternative administration routes, thereby promoting patient compliance and adherence to therapy. Through this approach, the therapy seeks to provide an optimized means of addressing the challenges associated with smoking cessation and enhancing patient outcomes.therapy. The synergy between these amino acids aims to alleviate withdrawal symptoms in smoking cessation. In vivo studies demonstrated swift action, concentrated drug delivery, and prolonged drug presence at the site of administration. Consequently, this study concludes that the dry powder inhalation method offers an effective means of lung drug delivery compared to other routes, enhancing patient compliance and treatment adherence. This innovative therapy approach endeavors to address the complexities of smoking cessation and improve patient outcomes

Keywords: formulation, development, dry powder, amino acid, smoking cessation

[This article belongs to International Journal of Biomedical Innovations and Engineering(ijbie)]

How to cite this article: Padma Latha, Syed Riaz Hussain Chistia, N. Jyothi Reddy. Development of Formulation for Dry Powder Inhalation of Amino Acids Aimed at Smoking Cessation: A Biomedical Perspective. International Journal of Biomedical Innovations and Engineering. 2024; 02(02):13-29.
How to cite this URL: Padma Latha, Syed Riaz Hussain Chistia, N. Jyothi Reddy. Development of Formulation for Dry Powder Inhalation of Amino Acids Aimed at Smoking Cessation: A Biomedical Perspective. International Journal of Biomedical Innovations and Engineering. 2024; 02(02):13-29. Available from: https://journals.stmjournals.com/ijbie/article=2024/view=157007



References

  1. Paranjpe M., Müller-Goymann C.C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci. 2014;15:5852–5873. doi: 10.3390/ijms15045852. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  2. Okamoto H., Danjo K. Application of supercritical fluid to preparation of powders of high-molecular weight drugs for inhalation. Adv. Drug Deliv. Rev. 2008;60:433–446. doi: 10.1016/j.addr.2007.02.002. [PubMed] [CrossRef] [Google Scholar]
  3. Mahmud A., Discher D.E. Lung vascular targeting through inhalation delivery: Insight from filamentous viruses and other shapes. IUBMB Life. 2011;63:607–612. doi: 10.1002/iub.481. [PubMed] [CrossRef] [Google Scholar]
  4. Sung J.C., Pulliam B.L., Edwards D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–570. doi: 10.1016/j.tibtech.2007.09.005. [PubMed] [CrossRef] [Google Scholar]
  5. Bhavane R., Karathanasis E., Annapragada A.V. Agglomerated vesicle technology: A new class of particles for controlled and modulated pulmonary drug delivery. J. Control. Release. 2003;93:15–28. doi: 10.1016/S0168-3659(03)00359-6. [PubMed] [CrossRef] [Google Scholar]
  6. Thorley A.J., Tetley T.D. New perspectives in nanomedicine. Pharmacol. Ther. 2013;140:176–185. doi: 10.1016/j.pharmthera.2013.06.008. [PubMed] [CrossRef] [Google Scholar]
  7. Preedy E.C., Prokopovich P. Inhaler Devices. Elsevier; New York, NY, USA: 2013. Novel coatings and biotechnology trends in inhaler devices; pp. 37–50. [Google Scholar]
  8. Alpar H., Somavarapu S., Atuah K.N., Bramwell V.W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev. 2005;57:411–430. doi: 10.1016/j.addr.2004.09.004. [PubMed] [CrossRef] [Google Scholar]
  9. Hamedinasab H., Rezayan A.H., Mellat M., Mashreghi M., Jaafari M.R. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int. J. Biol. Macromol. 2020;156:1455–1463. doi: 10.1016/j.ijbiomac.2019.11.190. [PubMed] [CrossRef] [Google Scholar]
  10. Patton J.S., Brain J.D., Davies L.A., Fiegel J., Gumbleton M., Kim K.-J., Sakagami M., Vanbever R., Ehrhardt C. The Particle has Landed—Characterizing the Fate of Inhaled Pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 2010;23:S-71–S-87. doi: 10.1089/jamp.2010.0836. [PubMed] [CrossRef] [Google Scholar]
  11. Kanig J.L. Pharmaceutical Aerosols. J. Pharm. Sci. 1963;52:513–535. doi: 10.1002/jps.2600520603. [PubMed] [CrossRef] [Google Scholar]
  12. Bosquillon C., Lombry C., Preat V., Vanbever R. Comparison of particle sizing techniques in the case of inhalation dry powders. J. Pharm. Sci. 2001;90:2032–2041. doi: 10.1002/jps.1154. [PubMed] [CrossRef] [Google Scholar] 13. El-Sherbiny I.M., Villanueva D.G., Herrera D., Smyth H.D.C. Controlled Pulmonary Drug Delivery. Springer; New York, NY, USA: 2011. Overcoming Lung Clearance Mechanisms for Controlled Release Drug Delivery; pp. 101–126. [Google Scholar] 14. Chew N.Y., Chan H.-K. The Role of Particle Properties in Pharmaceutical Powder Inhalation Formulations. J. Aerosol Med. 2002;15:325–330. doi: 10.1089/089426802760292672. [PubMed] [CrossRef] [Google Scholar] 15. Chen L., Okuda T., Lu X.-Y., Chan H.-K. Amorphous powders for inhalation drug delivery. Adv. Drug Deliv. Rev. 2016;100:102–115. doi: 10.1016/j.addr.2016.01.002. [PubMed] [CrossRef] [Google Scholar] 16. Ticehurst M.D., Basford P.A., Dallman C.I., Lukas T.M., Marshall P.V., Nichols G., Smith D. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide. Int. J. Pharm. 2000;193:247–259. doi: 10.1016/S0378-5173(99)00347-6. [PubMed] [CrossRef] [Google Scholar] 17. Mackin L., Zanon R., Park J.M., Foster K., Opalenik H., Demonte M. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry. Int. J. Pharm. 2002;231:227–236. [PubMed] [Google Scholar] 18. Jain M.S., Lohare G.B., Bari M.M., Chavan R.B., Barhate S.D., Shah C.B. Spray Drying in Pharmaceutical Industry: A Review. Res. J. Pharm. Dos. Forms Technol. 2012;4:74–79. [Google Scholar] 19. Leung S.S.Y., Parumasivam T., Gao F.G., Carrigy N.B., Vehring R., Finlay W.H., Morales S., Britton W.J., Kutter E., Chan H.-K. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Pharm. Res. 2016;33:1486–1496. doi: 10.1007/s11095-016-1892-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 20. Panão M.O., Moreira A.L.N., Vicente J., Costa E. Assessment of ultrasonic sprays for spray drying. Assessment. 2014;7:10. [Google Scholar] 21. Joshi J.T. A review on micronization techniques. J. Pharm. Sci. Technol. 2011;3:651–681. [Google Scholar] 22. Otake H., Okuda T., Okamoto H. Development of Spray-Freeze-Dried Powders for Inhalation with High Inhalation Performance and Antihygroscopic Property. Chem. Pharm. Bull. 2016;64:239–245. doi: 10.1248/cpb.c15-00824. [PubMed] [CrossRef] [Google Scholar] 23. Kondo M., Niwa T., Okamoto H., Danjo K. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique. Chem. Pharm. Bull. 2009;57:657–662. doi: 10.1248/cpb.57.657. [PubMed] [CrossRef] [Google Scholar] 24. Ishwarya S.P., Anandharamakrishnan C., Stapley A.G. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends Food Sci. Technol. 2015;41:161–181. doi: 10.1016/j.tifs.2014.10.008. [CrossRef] [Google Scholar] 25. Ali M.E., Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur. J. Pharm. Biopharm. 2014;87:510–517. doi: 10.1016/j.ejpb.2014.03.009. [PubMed] [CrossRef] [Google Scholar] 26. Shoyele S.A., Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev. 2006;58:1009–1029. doi: 10.1016/j.addr.2006.07.010. [PubMed] [CrossRef] [Google Scholar] 27. Davies O.R., Lewis A.L., Whitaker M.J., Tai H., Shakesheff K.M., Howdle S.M. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 2008;60:373–387. doi: 10.1016/j.addr.2006.12.001. [PubMed] [CrossRef] [Google Scholar]

Regular Issue Subscription Original Research
Volume 02
Issue 02
Received March 26, 2024
Accepted April 6, 2024
Published April 30, 2024