Multiple Sclerosis: A Systematic Review of a Neurological Disorder

Year : 2023 | Volume :01 | Issue : 01 | Page : 53-71
By

Apeksha Pandey

  1. Student Department of Biotechnology, University Institute of Biotechnology, Chandigarh University Punjab India

Abstract

The inflammatory illness known as multiple sclerosis (MS) is brought on by outside influences that affect a biologically vulnerable host. It has 3 separate diagnostic phases: the pre-clinical phase, which can only be discovered by MRI; the relapsing-remitting (RRMS) phase, which again is defined by bouts of neurological malfunction accompanied by remission; and the progressing phase, which often develops from either the relapse phase. Unfortunately, the majority of relapse MS medications are ineffective against progressing illness. A compartmentalised inflammatory response comprising neurons and glial in the nervous system, in addition to completely impervious mechanisms that cause neuronal damage, are characteristics of progressing MS. Identifying the processes of tumor growth, creating treatments for progressing MS, and establishing the extent towards which progressing illness may be avoided by techniques that help are significant issues for MS study. This whole review covers about the, types and variants, pathophysiology, causes, diagnosis, therapies, biomarkers, cells involved and management of the disease.

Keywords: Relapsing-remitting, progressing MS, tumor growth, pathophysiology

[This article belongs to International Journal of Genetic Modifications and Recombinations(ijgmr)]

How to cite this article: Apeksha Pandey. Multiple Sclerosis: A Systematic Review of a Neurological Disorder. International Journal of Genetic Modifications and Recombinations. 2023; 01(01):53-71.
How to cite this URL: Apeksha Pandey. Multiple Sclerosis: A Systematic Review of a Neurological Disorder. International Journal of Genetic Modifications and Recombinations. 2023; 01(01):53-71. Available from: https://journals.stmjournals.com/ijgmr/article=2023/view=111672

Browse Figures

References

  1. Lassmann H (July 2005). “Multiple sclerosis pathology: evolution of pathogenetic concepts”. Brain Pathology. 15 (3): 217–22. doi:1111/j.1750-3639.2005.tb00523.x. PMC 8095927. PMID 16196388. S2CID 8342303
  2. Compston A (October 1988). “The 150th anniversary of the first depiction of the lesions of multiple sclerosis”. Journal of Neurology, Neurosurgery, and Psychiatry
  3. Milo R, Miller A (April 2014). “Revised diagnostic criteria of multiple sclerosis”. Autoimmunity Reviews. 13 (4–5): 518–524. doi:1016/j.autrev.2014.01.012. PMID 24424194.
  4. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, Waubant E, Polman CH (July 2014). “Defining the clinical course of multiple sclerosis: the 2013 revisions”. Neurology. 83 (3): 278–86. doi:1212/WNL.0000000000000560. PMC 4117366. PMID 24871874.
  5. Compston A, Coles A (October 2008). “Multiple sclerosis”. Lancet. 372 (9648): 1502–1517. doi:1016/S0140-6736(08)61620-7. PMID 18970977. S2CID 195686659.
  6. Milo R, Kahana E (March 2010). “Multiple sclerosis: geoepidemiology, genetics and the environment”. Autoimmunity Reviews. 9 (5): A387–94. doi:1016/j.autrev.2009.11.010. PMID 19932200
  7. National Institute of Neurological Disorders and Stroke. 19 November 2015. Archived from the original on 13 February 2016. Retrieved 6 March 2016.
  8. Nakahara J, Maeda M, Aiso S, Suzuki N (February 2012). “Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy”. Clinical Reviews in Allergy & Immunology. 42 (1): 26–34. doi:1007/s12016-011-8287-6
  9. Tsang BK, Macdonell R (December 2011). “Multiple sclerosis-diagnosis, management and prognosis”. Australian Family Physician. 40 (12): 948–55. PMID 22146321. Archived from the original on 5 October 2021. Retrieved 5 October 2021.
  10. Liu Z, Liao Q, Wen H, Zhang Y (June 2021). “Disease modifying therapies in relapsing-remitting multiple sclerosis: A systematic review and network meta-analysis”. Autoimmunity Reviews. 20 (6): 102826. doi:1016/j.autrev.2021.102826. PMID 33878488.
  11. Alphonsus KB, Su Y, D’Arcy C (April 2019). “The effect of exercise, yoga and physiotherapy on the quality of life of people with multiple sclerosis: Systematic review and meta-analysis”. Complementary Therapies in Medicine. 43: 188–195. doi:1016/j.ctim.2019.02.010. PMID 30935529
  12. Lublin FD, et al. (15 July 2014). “Defining the clinical course of multiple sclerosis, The 2013 revisions”. Neurology. 83 (3): 278–286. doi:1212/WNL.0000000000000560. PMC 4117366. PMID 24871874
  13. Lublin FD, Coetzee T, Cohen JA, Marrie RA, Thompson AJ (June 2020). “The 2013 clinical course descriptors for multiple sclerosis: A clarification”. Neurology. 94 (24): 1088–1092. doi:1212/WNL.0000000000009636. PMC 7455332. PMID 32471886.
  14. Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M (April 2006). “Secondary progressive multiple sclerosis: current knowledge and future challenges”. The Lancet. Neurology. 5 (4): 343–54. doi:1016/S1474-4422(06)70410-0. PMID 16545751. S2CID 39503553.
  15. Miller DH, Leary SM (October 2007). “Primary-progressive multiple sclerosis”. The Lancet. Neurology. 6 (10): 903–12. doi:1016/S1474-4422(07)70243-0. hdl:1871/24666. PMID 17884680. S2CID 31389841.
  16. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M (May 2005). “Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis”. The Lancet. Neurology. 4 (5): 281–8. doi:1016/S1474-4422(05)70071-5. PMID 15847841. S2CID 36401666.
  17. Compston A, Coles A (October 2008). “Multiple sclerosis”. Lancet. 372 (9648): 1502–1517. doi:1016/S0140-6736(08)61620-7. PMID 18970977. S2CID 195686659.
  18. Oreja-Guevara C, Ayuso Blanco T, Brieva Ruiz L, Hernández Pérez MÁ, Meca-Lallana V, Ramió-Torrentà L (2019). “Cognitive Dysfunctions and Assessments in Multiple Sclerosis”. Frontiers in Neurology. 10: 581. doi:3389/fneur.2019.00581. PMC 6558141. PMID 31214113.
  19. ^ Kalb R, Beier M, Benedict RH, Charvet L, Costello K, Feinstein A, et al. (November 2018). “Recommendations for cognitive screening and management in multiple sclerosis care”. Multiple Sclerosis. 24 (13): 1665–1680. doi:1177/1352458518803785. PMC 6238181. PMID 30303036.
  20. ^ Benedict RH, Amato MP, DeLuca J, Geurts JJ (October 2020). “Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues”. The Lancet. Neurology. 19 (10): 860–871. doi:1016/S1474-4422(20)30277-5. PMID 32949546. S2CID 221744328
  21. ataru N, Vidal C, Decavel P, Berger E, Rumbach L (2006). “Limited impact of the summer heat wave in France (2003) on hospital admissions and relapses for multiple sclerosis”. Neuroepidemiology. 27 (1): 28–32. doi:1159/000094233. PMID 16804331. S2CID 20870484.
  22. ^ Heesen C, Mohr DC, Huitinga I, Bergh FT, Gaab J, Otte C, Gold SM (March 2007). “Stress regulation in multiple sclerosis: current issues and concepts”. Multiple Sclerosis. 13 (2): 143–8. doi:1177/1352458506070772. PMID 17439878. S2CID 8262595
  23. Compston A, Coles A (April 2002). “Multiple sclerosis”. Lancet. 359 (9313): 1221–1231. doi:1016/S0140-6736(02)08220-X. PMID 11955556. S2CID 14207583
  24. Ascherio A, Munger KL (April 2007). “Environmental risk factors for multiple sclerosis. Part I: the role of infection”. Annals of Neurology. 61 (4): 288–99. doi:1002/ana.21117. PMID 17444504. S2CID 7682774
  25. Gilden DH (March 2005). “Infectious causes of multiple sclerosis”. The Lancet. Neurology. 4 (3): 195–202. doi:1016/S1474-4422(05)01017-3. PMC 7129502. PMID 15721830
  26. Dyment DA, Ebers GC, Sadovnick AD (February 2004). “Genetics of multiple sclerosis”. The Lancet. Neurology. 3 (2): 104–10. CiteSeerX 1.1.334.1312. doi:10.1016/S1474-4422(03)00663-X. PMID 14747002. S2CID 16707321.
  27. ^ Skene NG, Grant SG (2016). “Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment”. Frontiers in Neuroscience. 10: 16. doi:3389/fnins.2016.00016. PMC 4730103. PMID 26858593.
  28. ^ Hassan-Smith G, Douglas MR (October 2011). “Epidemiology and diagnosis of multiple sclerosis”. British Journal of Hospital Medicine. 72 (10): M146-51. doi:12968/hmed.2011.72.Sup10.M146. PMID 22041658
  29. Pugliatti M, Sotgiu S, Rosati G (July 2002). “The worldwide prevalence of multiple sclerosis”. Clinical Neurology and Neurosurgery. 104 (3): 182–91. doi:1016/S0303-8467(02)00036-7. PMID 12127652. S2CID 862001.
  30. ^ Grimaldi LM, Salemi G, Grimaldi G, Rizzo A, Marziolo R, Lo Presti C, Maimone D, Savettieri G (November 2001). “High incidence and increasing prevalence of MS in Enna (Sicily), southern Italy”. Neurology. 57 (10): 1891–3. doi:1212/wnl.57.10.1891. PMID 11723283. S2CID 34895995.
  31. ^ Kulie T, Groff A, Redmer J, Hounshell J, Schrager S (2009). “Vitamin D: an evidence-based review”. Journal of the American Board of Family Medicine. 22 (6): 698–706. doi:3122/jabfm.2009.06.090037. PMID 19897699.
  32. Marrie RA (December 2004). “Environmental risk factors in multiple sclerosis aetiology”. The Lancet. Neurology. 3 (12): 709–18. doi:1016/S1474-4422(04)00933-0. PMID 15556803. S2CID 175786.
  33. ^ Jump up to:a b c Ascherio A, Munger KL (June 2007). “Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors”. Annals of Neurology. 61 (6): 504–13. doi:1002/ana.21141. PMID 17492755. S2CID 36999504.
  34. ^ Hedström A, Hössjer O, Katsoulis M (September 2018). “Organic solvents and MS susceptibility: Interaction with MS risk HLA genes”. Neurology. 91 (5): 455–462. doi:1212/WNL.0000000000005906. PMC 6093765. PMID 29970406.
  35. Chen Y, Popko B (2018). “Cholesterol crystals impede nerve repair”. Science. 359 (6376): 635–636. Bibcode:..359..635C. doi:10.1126/science.aar7369. PMID 29439228. S2CID 3257111.
  36. Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, Ruhwedel T, Mitkovski M, Trendelenburg G, Lütjohann D, Möbius W, Simons M (2018). “Defective cholesterol clearance limits remyelination in the aged central nervous system”. Science. 359 (6376): 684–688. Bibcode:..359..684C. doi:10.1126/science.aan4183. PMID 29301957.
  37. Chari DM (2007). “Remyelination in multiple sclerosis”. International Review of Neurobiology. 79: 589–620. doi:1016/S0074-7742(07)79026-8. ISBN 978-0-12-373736-6. PMC 7112255. PMID 17531860.
  38. ^ Pittock SJ, Lucchinetti CF (March 2007). “The pathology of MS: new insights and potential clinical applications”. The Neurologist. 13 (2): 45–56. doi:1097/01.nrl.0000253065.31662.37. PMID 17351524. S2CID 2993523
  39. Ruiz, F., Vigne, S., & Pot, C. (2019). Resolution of inflammation during multiple sclerosis. Seminars in immunopathology, 41(6), 711–726. https://doi.org/10.1007/s00281-019-00765-0
  40. Haase, S., & Linker, R. A. (2021). Inflammation in multiple sclerosis. Therapeutic advances in neurological disorders, 14, 17562864211007687. https://doi.org/10.1177/17562864211007687
  41. Huang X, Hussain B, Chang J (January 2021). “Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms”. CNS Neuroscience & Therapeutics. 27 (1): 36–47. doi:1111/cns.13569. PMC 7804893. PMID 33381913.
  42. ^ Ferré JC, Shiroishi MS, Law M (November 2012). “Advanced techniques using contrast media in neuroimaging”. Magnetic Resonance Imaging Clinics of North America. 20 (4): 699–713. doi:1016/j.mric.2012.07.007. PMC 3479680. PMID 23088946
  43. Maglione, A., Rolla, S., Mercanti, S. F., Cutrupi, S., & Clerico, M. (2019). The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells, 8(10), 1280. https://doi.org/10.3390/cells8101280
  44. Kaskow, B. J., & Baecher-Allan, C. (2018). Effector T Cells in Multiple Sclerosis. Cold Spring Harbor perspectives in medicine, 8(4), a029025. https://doi.org/10.1101/cshperspect.a029025
  45. Kunkl, M., Frascolla, S., Amormino, C., Volpe, E., & Tuosto, L. (2020). T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells, 9(2), 482. https://doi.org/10.3390/cells9020482
  46. Basak, J., & Majsterek, I. (2021). miRNA-Dependent CD4+ T Cell Differentiation in the Pathogenesis of Multiple Sclerosis. Multiple sclerosis international, 2021, 8825588. https://doi.org/10.1155/2021/8825588
  47. Traugott, U., Reinherz, E. L., & Raine, C. S. (1983). Multiple sclerosis. Distribution of T cells, T cell subsets and Ia-positive macrophages in lesions of different ages. Journal of neuroimmunology, 4(3), 201–221. https://doi.org/10.1016/0165-5728(83)90036-x
  48. Veroni, C., & Aloisi, F. (2021). The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Frontiers in immunology, 12, 665718. https://doi.org/10.3389/fimmu.2021.665718
  49. Mockus, T. E., Munie, A., Atkinson, J. R., & Segal, B. M. (2021). Encephalitogenic and Regulatory CD8 T Cells in Multiple Sclerosis and Its Animal Models. Journal of immunology (Baltimore, Md. : 1950), 206(1), 3–10. https://doi.org/10.4049/jimmunol.2000797
  50. Beliën, J., Goris, A., & Matthys, P. (2022). Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Frontiers in immunology, 13, 869447. https://doi.org/10.3389/fimmu.2022.869447
  51. Moreira, A., Alari-Pahissa, E., Munteis, E., Vera, A., Zabalza, A., Llop, M., Villarrubia, N., Costa-García, M., Álvarez-Lafuente, R., Villar, L. M., López-Botet, M., & Martínez-Rodríguez, J. E. (2019). Adaptive Features of Natural Killer Cells in Multiple Sclerosis. Frontiers in immunology, 10, 2403. https://doi.org/10.3389/fimmu.2019.02403
  52. Comi, G., Bar-Or, A., Lassmann, H., Uccelli, A., Hartung, H. P., Montalban, X., Sørensen, P. S., Hohlfeld, R., Hauser, S. L., & Expert Panel of the 27th Annual Meeting of the European Charcot Foundation (2021). Role of B Cells in Multiple Sclerosis and Related Disorders. Annals of neurology, 89(1), 13–23. https://doi.org/10.1002/ana.25927
  53. Gharibi, T., Babaloo, Z., Hosseini, A., Marofi, F., Ebrahimi-Kalan, A., Jahandideh, S., & Baradaran, B. (2020). The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology, 160(4), 325–335. https://doi.org/10.1111/imm.13198
  54. Paul, A., Comabella, M., & Gandhi, R. (2019). Biomarkers in Multiple Sclerosis. Cold Spring Harbor perspectives in medicine, 9(3), a029058. https://doi.org/10.1101/cshperspect.a029058
  55. Yang, J., Hamade, M., Wu, Q., Wang, Q., Axtell, R., Giri, S., & Mao-Draayer, Y. (2022). Current and Future Biomarkers in Multiple Sclerosis. International journal of molecular sciences, 23(11), 5877. https://doi.org/10.3390/ijms23115877
  56. Brändle, S. M., Obermeier, B., Senel, M., Bruder, J., Mentele, R., Khademi, M., Olsson, T., Tumani, H., Kristoferitsch, et.al (2016). Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7864–7869. https://doi.org/10.1073/pnas.1522730113
  57. Deisenhammer, F., Zetterberg, H., Fitzner, B., & Zettl, U. K. (2019). The Cerebrospinal Fluid in Multiple Sclerosis. Frontiers in immunology, 10, 726. https://doi.org/10.3389/fimmu.2019.00726
  58. Martinsen, V., & Kursula, P. (2022). Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino acids, 54(1), 99–109. https://doi.org/10.1007/s00726-021-03111-7
  59. Langeh, U., & Singh, S. (2021). Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Current neuropharmacology, 19(2), 265–277. https://doi.org/10.2174/1570159X18666200729100427
  60. Floro, S., Carandini, T., Pietroboni, A. M., De Riz, M. A., Scarpini, E., & Galimberti, D. (2022). Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. Neurology(R) neuroimmunology & neuroinflammation, 9(4), e1164. https://doi.org/10.1212/NXI.0000000000001164
  61. Varhaug, K. N., Torkildsen, Ø., Myhr, K. M., & Vedeler, C. A. (2019). Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Frontiers in neurology, 10, 338. https://doi.org/10.3389/fneur.2019.00338
  62. Bivona, G., Gambino, C. M., Lo Sasso, B., Scazzone, C., Giglio, R. V., Agnello, L., & Ciaccio, M. (2022). Serum Vitamin D as a Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases. Diagnostics (Basel, Switzerland), 12(1), 130. https://doi.org/10.3390/diagnostics12010130
  63. Najafi, P., Hadizadeh, M., Cheong, J. P. G., Mohafez, H., & Abdullah, S. (2022). Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. International journal of environmental research and public health, 19(13), 8151. https://doi.org/10.3390/ijerph19138151
  64. Gorter, R. P., & Baron, W. (2020). Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neuroscience letters, 729, 134980. https://doi.org/10.1016/j.neulet.2020.134980
  65. Sinnecker T, Clarke MA, Meier D, Enzinger C, Calabrese M, De Stefano N, et al. (MAGNIMS Study Group) (December 2019). “Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis”. JAMA Neurology. 76 (12): 1446–1456. doi:1001/jamaneurol.2019.2478. PMC 6704746. PMID 31424490.
  66. ^ Bernitsas E (February 2020). “The Central Vein Sign”. Practical Neurology. Archived from the original on 5 October 2021. Retrieved 5 October 2021.
  67. ^ Castellaro M, Tamanti A, Pisani AI, Pizzini FB, Crescenzo F, Calabrese M (November 2020). “The Use of the Central Vein Sign in the Diagnosis of Multiple Sclerosis: A Systematic Review and Meta-analysis”. Diagnostics. 10 (12): 1025. doi:3390/diagnostics10121025. PMC 7760678. PMID 33260401.
  68. ^ Al-Zandi SH, Fayadh NA, Al-Waely NK (1 March 2018). “Central vein sign detected by SWI at 3 T MRI as a discriminator between multiple sclerosis and leukoaraiosis”. The Egyptian Journal of Radiology and Nuclear Medicine. 49 (1): 158–164. doi:1016/j.ejrnm.2017.09.003
  69. Inojosa, H., Proschmann, U., Akgün, K., & Ziemssen, T. (2022). The need for a strategic therapeutic approach: multiple sclerosis in check. Therapeutic advances in chronic disease, 13, 20406223211063032. https://doi.org/10.1177/20406223211063032
  70. Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R., & Weinstock-Guttman, B. (2018). Interferon β for Multiple Sclerosis. Cold Spring Harbor perspectives in medicine, 8(11), a032003. https://doi.org/10.1101/cshperspect.a032003
  71. Kuerten, S., Jackson, L. J., Kaye, J., & Vollmer, T. L. (2018). Impact of Glatiramer Acetate on B Cell-Mediated Pathogenesis of Multiple Sclerosis. CNS drugs, 32(11), 1039–1051. https://doi.org/10.1007/s40263-018-0567-8
  72. Goldschmidt, C., & McGinley, M. P. (2021). Advances in the Treatment of Multiple Sclerosis. Neurologic clinics, 39(1), 21–33. https://doi.org/10.1016/j.ncl.2020.09.002
  73. Jagannath, V. A., Filippini, G., Di Pietrantonj, C., Asokan, G. V., Robak, E. W., Whamond, L., & Robinson, S. A. (2018). Vitamin D for the management of multiple sclerosis. The Cochrane database of systematic reviews, 9(9), CD008422. https://doi.org/10.1002/14651858.CD008422.pub3
  74. Park, C. S., Kim, S. H., & Lee, C. K. (2020). Immunotherapy of Autoimmune Diseases with Nonantibiotic Properties of Tetracyclines. Immune network, 20(6), e47. https://doi.org/10.4110/in.2020.20.e47
  75. He, H., Hu, Z., Xiao, H., Zhou, F., & Yang, B. (2018). The tale of histone modifications and its role in multiple sclerosis. Human genomics, 12(1), 31. https://doi.org/10.1186/s40246-018-0163-5
  76. Biolato, M., Bianco, A., Lucchini, M., Gasbarrini, A., Mirabella, M., & Grieco, A. (2021). The Disease-Modifying Therapies of Relapsing-Remitting Multiple Sclerosis and Liver Injury: A Narrative Review. CNS drugs, 35(8), 861–880. https://doi.org/10.1007/s40263-021-00842-9
  77. Rafiee Zadeh, A., Askari, M., Azadani, N. N., Ataei, A., Ghadimi, K., Tavoosi, N., & Falahatian, M. (2019). Mechanism and adverse effects of multiple sclerosis drugs: a review article. Part 1. International journal of physiology, pathophysiology and pharmacology, 11(4), 95–104.
  78. Reichardt, S. D., Amouret, A., Muzzi, C., Vettorazzi, S., Tuckermann, J. P., Lühder, F., & Reichardt, H. M. (2021). The Role of Glucocorticoids in Inflammatory Diseases. Cells, 10(11), 2921. https://doi.org/10.3390/cells10112921
  79. Wei, W., Ma, D., Li, L., & Zhang, L. (2021). Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Frontiers in pharmacology, 12, 724718. https://doi.org/10.3389/fphar.2021.724718
  80. Cree BA, Hartung HP, Barnett M (June 2022). “New drugs for multiple sclerosis: new treatment algorithms”. Curr Opin Neurol. 35 (3): 262–270. doi:1097/WCO.0000000000001063. PMID 35674067. S2CID 249438715.
  81. Oh J, Vidal-Jordana A, Montalban X (December 2018). “Multiple sclerosis: clinical aspects”. Curr Opin Neurol. 31 (6): 752–759. doi:1097/WCO.0000000000000622. PMID 30300239. S2CID 6103857.
  82. Hauser SL, Cree BA (December 2020). “Treatment of Multiple Sclerosis: A Review”. Am J Med. 133 (12): 1380–1390.e2. doi:1016/j.amjmed.2020.05.049. PMC 7704606. PMID 32682869.
  83. Ontaneda D (June 2019). “Progressive Multiple Sclerosis”. Continuum (Minneap Minn). 25 (3): 736–752. doi:1212/CON.0000000000000727. PMID 31162314. S2CID 174808956
  84. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (April 2018). “Multiple sclerosis”. Lancet. 391 (10130): 1622–1636. doi:1016/S0140-6736(18)30481-1. PMID 29576504. S2CID 4313310
  85. Gasperini, C., Prosperini, L., Tintoré, M., Sormani, M. P., Filippi, M., Rio, J., Palace, et.al the MAGNIMS Study Group (2019). Unraveling treatment response in multiple sclerosis: A clinical and MRI challenge. Neurology, 92(4), 180–192. https://doi.org/10.1212/WNL.0000000000006810
  86. Burton JM, O’Connor PW, Hohol M, Beyene J (December 2012). “Oral versus intravenous steroids for treatment of relapses in multiple sclerosis”. The Cochrane Database of Systematic Reviews. 12: CD006921. doi:1002/14651858.CD006921.pub3. PMID 23235634.
  87. Filippini G, Brusaferri F, Sibley WA, et al. (2000). “Corticosteroids or ACTH for acute exacerbations in multiple sclerosis”. Cochrane Database Syst Rev (4): CD001331. doi:1002/14651858.CD001331. PMID 11034713.
  88. The National Collaborating Centre for Chronic Conditions (2004). “Treatment of acute episodes”. Multiple sclerosis : national clinical guideline for diagnosis and management in primary and secondary care. London: Royal College of Physicians. pp. 54–58. ISBN 1-86016-182-0. PMID 21290636. Archived from the original on 10 February 2023. Retrieved 5 October 2021
  89. Sîrbu, C. A., Thompson, D. C., Plesa, F. C., Vasile, T. M., Jianu, D. C., Mitrica, M., Anghel, D., & Stefani, C. (2022). Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. Journal of clinical medicine, 11(23), 7003. https://doi.org/10.3390/jcm11237003
  90. Sturm, D., Gurevitz, S. L., & Turner, A. (2014). Multiple sclerosis: a review of the disease and treatment options. The Consultant pharmacist : the journal of the American Society of Consultant Pharmacists, 29(7), 469–479. https://doi.org/10.4140/TCP.n.2014.469

Regular Issue Subscription Original Research
Volume 01
Issue 01
Received April 13, 2023
Accepted April 17, 2023
Published June 28, 2023